Rebecca Trager examines an emerging industry that is growing ‘meat’ outside of animals using cell lines cultivated in bioreactors.
Artificial meat flexes its muscles
Posted in futurism
Posted in futurism
Rebecca Trager examines an emerging industry that is growing ‘meat’ outside of animals using cell lines cultivated in bioreactors.
Astronomers have long sought the launch sites for some of the highest-energy protons in our galaxy. Now a study using 12 years of data from NASA’s Fermi Gamma-ray Space Telescope confirms that one supernova remnant is just such a place.
Fermi has shown that the shock waves of exploded stars boost particles to speeds comparable to that of light. Called cosmic rays, these particles mostly take the form of protons, but can include atomic nuclei and electrons. Because they all carry an electric charge, their paths become scrambled as they whisk through our galaxy’s magnetic field. Since we can no longer tell which direction they originated from, this masks their birthplace. But when these particles collide with interstellar gas near the supernova remnant, they produce a telltale glow in gamma rays—the highest-energy light there is.
“Theorists think the highest-energy cosmic ray protons in the Milky Way reach a million billion electron volts, or PeV energies,” said Ke Fang, an assistant professor of physics at the University of Wisconsin, Madison. “The precise nature of their sources, which we call PeVatrons, has been difficult to pin down.”
MIT researchers have developed a method for 3D printing materials with tunable mechanical properties, that sense how they are moving and interacting with the environment. The researchers create these sensing structures using just one material and a single run on a 3D printer.
To accomplish this, the researchers began with 3D-printed lattice materials and incorporated networks of air-filled channels into the structure during the printing process. By measuring how the pressure changes within these channels when the structure is squeezed, bent, or stretched, engineers can receive feedback on how the material is moving.
The method opens opportunities for embedding sensors within architected materials, a class of materials whose mechanical properties are programmed through form and composition. Controlling the geometry of features in architected materials alters their mechanical properties, such as stiffness or toughness. For instance, in cellular structures like the lattices the researchers print, a denser network of cells makes a stiffer structure.
The discovery of a super-Earth around the red dwarf Ross 508 is reported by astronomers in Japan. Part of the planet’s elliptical orbit takes it within the star’s habitable zone, where liquid water may exist.
This cabin in the woods is an otherworldly, all-black, geometric structure built to provide cozy refuge even in harsh Finnish winters. It was designed for a California-based CEO who returned home to Finland with her family to be closer to her ancestral land so she could maintain it. The cabin is aptly named Meteorite based.
This cabin in the woods is an otherworldly, all-black, geometric structure built to provide cozy refuge even in harsh Finnish winters. It was designed for a California-based CEO who returned home to Finland with her family to be closer to her ancestral land so she could maintain it. The cabin is aptly named Meteorite based on its unique shape and is set in a clearing surrounded by spruce and birch trees. The cabin is made entirely from cross-laminated timber (CLT) which is a sustainable alternative to other construction materials.
A new study corrects an important error in the 3D mathematical space developed by the Nobel Prize-winning physicist Erwin Schrödinger and others, and used by scientists and industry for more than 100 years to describe how your eye distinguishes one color from another. The research has the potential to boost scientific data visualizations, improve TVs and recalibrate the textile and paint industries.
“The assumed shape of color space requires a paradigm shift,” said Roxana Bujack, a computer scientist with a background in mathematics who creates scientific visualizations at Los Alamos National Laboratory. Bujack is lead author of the paper by a Los Alamos team in the Proceedings of the National Academy of Sciences on the mathematics of color perception.
“Our research shows that the current mathematical model of how the eye perceives color differences is incorrect. That model was suggested by Bernhard Riemann and developed by Hermann von Helmholtz and Erwin Schrödinger—all giants in mathematics and physics—and proving one of them wrong is pretty much the dream of a scientist,” said Bujack.
Samsung unveiled the Galaxy Z Fold 4 and Z Flip 4 alongside new Galaxy Buds and the Galaxy Watch 5.
Water scarcity is a major global crisis that already affects every continent. Around 1.2 billion people, or almost one-fifth of the world’s population, lack access to safe drinking water. Desalination is the answer to long-term water security, but it’s also expensive, energy-intensive, and often inaccessible to isolated regions. This is why sustainable off-grid desalination systems powered by renewable energy are essential.
But thanks to the innovative microbial desalination cell (MDC) technology that follows a green, low-energy process with electro-active bacteria to desalinate and sterilize seawater, desalination is becoming a viable low-cost solution for water resources in many areas of the world and is putting an end to water scarcity even in isolated regions.
Now, researchers from the EU-funded W20 project have developed an off-grid innovative solution – the world’s first wave-driven desalination system – called Wave2O. The new system can be deployed quickly, operate completely off-grid, and supply large quantities of fresh water at a competitive cost. The technology uses the power of the ocean waves, a consistent and inexhaustible renewable energy source.
An internet powered by the weird physics of the quantum world would be virtually unhackable and literally faster than lightning.
Now, we’re one step closer to making that next-level communications network a reality, thanks to a quantum teleportation breakthrough out of the Fermi National Accelerator Laboratory.
So, what the heck is quantum teleportation?