Toggle light / dark theme

A special bonding state between atoms has been created in the laboratory for the first time: With a laser beam, atoms can be polarized so that they are positively charged on one side and negatively charged on the other. This makes them attract each other creating a very special bonding state—much weaker than the bond between two atoms in an ordinary molecule, but still measurable. The attraction comes from the polarized atoms themselves, but it is the laser beam that gives them the ability to do so—in a sense, it is a “molecule” of light and matter.

Theoretically, this effect has been predicted for a long time, but now scientists at the Vienna Center for Quantum Science and Technology (VCQ) at TU Wien, in cooperation with the University of Innsbruck, have succeeded in measuring this exotic atomic bond for the first time. This interaction is useful for manipulating extremely cold atoms, and the effect could also play a role in the formation of molecules in space. The results have now been published in the scientific journal Physical Review X.

REYKJAVIK, Iceland (AP) — A volcano in southwest Iceland began erupting Wednesday, the country’s meteorological authorities said — just eight months after its last eruption officially ended.

The Icelandic Meteorological Office urged people not to go near the Fagradalsfjall volcano, which is located some 32 kilometers (20 miles) southwest of the capital, Reykjavik.

The eruption in an uninhabited valley is not far from Keflavik Airport, Iceland’s international air traffic hub. The airport remained open and no flights were disrupted.

Researchers at the University of Massachusetts Amherst and the Georgia Institute of Technology have 3D printed a dual-phase, nanostructured high-entropy alloy that exceeds the strength and ductility of other state-of-the-art additively manufactured materials, which could lead to higher-performance components for applications in aerospace, medicine, energy and transportation.

The work, led by Wen Chen, assistant professor of mechanical and industrial engineering at UMass, and Ting Zhu, professor of mechanical engineering at Georgia Tech, is published by the journal Nature (“Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing”).

Wen Chen, assistant professor of mechanical and industrial engineering at UMass Amherst, stands in front of images of 3D printed high-entropy alloy components (heatsink fan and octect lattice, left) and a cross-sectional electron backscatter diffraction inverse-pole figure map demonstrating a randomly oriented nanolamella microstructure (right). (Image: UMass Amherst)

Many Mars-like features make Devon Island possibly the best Red Planet analog on Earth.


On Monday (Aug. 1), a group of eight researchers and their associates headed north to the high Arctic to spend a month at the Haughton-Mars Project (HMP) base on Devon Island, about 15 degrees south of the North Pole. The group includes the founder of the base and expedition leader, Dr. Pascal Lee, a group of researchers from MIT’s Haystack Observatory, other researchers and support staff, and me, the sole media representative.

This will be the return of the HMP team to the base since 2019 due to COVID-19 restrictions, and its condition is uncertain — weather and polar bears (opens in new tab) can wreak havoc with the structures and support equipment. Generators and ATVs on-site have gone through multiple freeze/thaw cycles, and increasingly hungry polar bears may have slashed their way into some of the lightly constructed habitats — they’ve tried before. While satellite images don’t show any extensive damage, success is far from certain.

Research on RNA diversity in human tissues, led by scientists from the New York Genome Center and the Broad Institute, is described in a recent study published in Nature. When the genetic code is transcribed to RNA, one gene typically produces several different forms of RNA molecules, or transcripts, with different functions. While this phenomenon has been known for decades, the catalog of human transcripts has remained incomplete.

“Equipped with the latest sequencing technology, we were able to read segments of over one thousand nucleotides, compared to less than one hundred with standard approaches,” describes Dr. Beryl Cummings, one of the leaders of the project and formerly a postdoctoral fellow at the Broad Institute. “Importantly, we were able to do this at scale of over 80 samples from many tissues, which led to discovery of tens of thousands of novel transcripts,” she adds.

The researchers used their data to characterize how genetic and environmental differences can manifest in differences in the transcriptome. “Genetic differences between individuals can affect how genes are regulated. We were able to describe with a finer resolution than before how transcript structures are affected. This helps to understand molecular underpinnings of variants that contribute to disease risk,” explains Dr. Dafni Glinos from the New York Genome Center and co-first author of the study.

Scientists from the University of Virginia School of Medicine and collaborators used the building blocks of life to potentially revolutionize electronics.

The scientists utilized DNA to guide a chemical reaction that would overcome the barrier to Little’s superconductor, which was once thought to be “insurmountable”, a press statement reveals.

A new study proposes a possible solution to the Fermi Paradox, suggesting why we may not detect advanced alien civilizations.

A new study offers a possible solution to the Fermi Paradox. * The Fermi Paradox wonders why we haven’t encountered aliens yet. * Advanced alien civilizations may be pulling back from space exploration to avoid collapse, predict the researchers.

With the sheer vastness of space, it seems quite conceivable that there should be more intelligent civilizations out there besides us. After all, some estimates peg the observable universe to contain at least 2 trillion galaxies, with each such galaxy having approximately 100 million stars on average but with some like our Milky Way Galaxy estimated as having as many as 200 billion stars and 100 billion planets. We are talking astonishing numbers in quintillions or sextillions for the total number of planets in the universe. new study by Dr. Michael Wong of the Carnegie Institution for Science and Caltech’s Dr. Stuart Bartlett proposes a possible solution to the Fermi Paradox.