Toggle light / dark theme

Researchers at Tel Aviv University and the University of Lisbon have jointly identified and synthesized a small molecule that could be a more accessible and effective alternative to an antibody that is successfully used to treat a range of cancers. Behind the groundbreaking development is an international team of researchers led by Prof. Ronit Sachi-Fainaro, Head of the Center for Cancer Biology Research and Head of the Laboratory for Cancer Research and Nanomedicine at the Sackler Faculty of Medicine, Tel Aviv University, and Prof. Helena Florindo and Prof. Rita Guedes from the Research Institute for Medicines at the Faculty of Pharmacy, University of Lisbon. The results of the study were published in the Journal for ImmunoTherapy of Cancer.

“In 2018, the Nobel Prize in Medicine was awarded to James Allison and Tasuku Honjo for their contribution to the study of immunotherapy, the treatment of cancer through activation of the immune system,” says Prof. Satchi-Fainaro, a 2020 Kadar Family Award recipient. “Honjo discovered that called T cells express the protein PD-1 that disables the T-cells’ own activity when it binds to the protein PD-L1 expressed in cancer cells. In fact, the interaction between PD-1 and PD-L1 allows cancer cells to paralyze the T cells, preventing them from attacking the cancer cells. Honjo developed antibodies that neutralize either PD-1 or PD-L1, thereby releasing the T cells to fight cancer effectively.”

The antibodies against PD-1/PD-L1 proteins are already approved for and are considered the great promise in the fight against cancer. This immunotherapy can significantly improve patient outcomes, without the that accompany treatments such as chemotherapy. But the antibodies are expensive to produce, and hence not available to all patients. Moreover, the treatment does not affect all parts of the solid tumors because the antibodies are too large to penetrate and reach less accessible and less exposed areas of the tumor. Now, researchers at Tel Aviv University and the University of Lisbon have used bioinformatic and data analysis tools to find a smaller, smarter alternative to these antibodies.

Machine-learning researchers make many decisions when designing new models. They decide how many layers to include in neural networks and what weights to give inputs at each node. The result of all this human decision-making is that complex models end up being “designed by intuition” rather than systematically, says Frank Hutter, head of the machine-learning lab at the University of Freiburg in Germany.

A growing field called automated machine learning, or autoML, aims to eliminate the guesswork. The idea is to have algorithms take over the decisions that researchers currently have to make when designing models. Ultimately, these techniques could make machine learning more accessible.

One convenient way to manipulate nanoscale objects with remote controllability is actuation and propulsion by light, which is largely based on optical and photothermal-induced forces. Unfortunately, the output of optical and photothermal-induced forces is small and speed is slow. This changes with a novel and intriguing nanoactuation system: plasmonic nanodynamite. This system can be optically triggered to eject gold nanobullets with an initial speed of up to 300 m/s.

From Alice in Wonderland to The Lord of the Rings, our stories have long depicted magical worlds hidden underground. Yet the most magical account of all might turn out to be reality, as scientists reveal a complex network of reactions between plants, fungi, bacteria, and more, interacting below the soil surface to support the foundations of life. At USDA’s Agricultural Research Service, one part of the research into this intricate underground world involves identifying techniques that will keep nitrogen—a vital element for plant growth—in the soil.

Like all good stories, this one has heroes and villains whose actions can wreak havoc or save us. When properly sequestered underground, some forms of nitrogen like ammonium and nitrate perform heroic feats, fertilizing the plants that we depend on for our food. Yet when they escape the soil in the wrong ways, they morph into closely-related super-villains malignant forms of nitrogen like nitrous oxide that, in the atmosphere, is 300 times more powerful than carbon dioxide in trapping heat, and lingers far longer. In fact, N2O is the largest source of greenhouse gas from agriculture. Escaped nitrogen can also get into groundwater or run off fields and into waterways; once there, it can fuel algae blooms in coastal waters that consume oxygen, harming fish and other aquatic creatures.

To keep nitrogen where it can do us the most good, a team of ARS scientists is developing new techniques for cover crop breeders. Their goal: to help the breeders identify plants whose extended underground root systems (known as the rhizosphere) are most effective at keeping nitrogen in the soil. The root systems, which include microbes that interact with the plants, secure nitrogen via a process called biological nitrification inhibition. Nitrification is a process in which nitrogen is transformed from one form, ammonium, to other forms, like nitrate. When the plants’ root systems inhibit that process, the nitrogen remains safely within the soil, benefiting plants—and those who eat them.

View insights.


An image of a kangaroo has been identified as Australia’s oldest known rock painting, dated to over 17,000 years old.

The two-metre-long kangaroo is painted on the ceiling of a rock shelter on the Unghango clan estate, in Balanggarra country in the north-eastern Kimberley region, WA.

A research team led by Damien Finch from the University of Melbourne used radiocarbon dating to determine the ages of mud-wasp nests below and above the painting.

Thomas Jefferson National Laboratory experiments hone in on a never-before-measured region of strong force coupling, a quantity that supports theories accounting for 99% of the ordinary mass in the universe.

Much fanfare was made about the Higgs boson when this elusive particle was discovered in 2012. Although it was touted as giving ordinary matter mass, interactions with the Higgs field only generate about 1% of ordinary mass. The other 99% comes from phenomena associated with the strong nuclear force, the fundamental force that binds smaller particles called quarks into larger particles called protons and neutrons that comprise the nucleus of the atoms of ordinary matter.

The Strong Nuclear Force (often referred to as the strong force) is one of the four basic forces in nature. The others are gravity, the electromagnetic force, and the weak nuclear force. As its name implies, it is the strongest of the four. However, it also has the shortest range, which means that particles must be extremely close before its effects are felt.

A fruit fly genome is not a just made up of fruit fly DNA—at least for one fruit fly species. New research from the University of Maryland School of Medicine’s (UMSOM) Institute for Genome Sciences (IGS) shows that one fruit fly species contains whole genomes of a kind of bacteria, making this finding the largest bacteria-to-animal transfer of genetic material ever discovered. The new research also sheds light on how this happens.

The IGS researchers, led by Julie Dunning Hotopp, Ph.D., Professor of Microbiology and Immunology at UMSOM and IGS, used new genetic long-read sequencing technology to show how genes from the bacteria Wolbachia incorporated themselves into the fly genome up to 8,000 years ago.

The researchers say their findings show that unlike Darwin’s finches or Mendel’s peas, isn’t always small, incremental, and predictable.