Toggle light / dark theme

Get wrekt, spammers. Security researcher Troy Hunt has created a hilariously devious ‘password purgatory’ for people invading his inbox.


Whether it’s John Wick or The Count of Monte Cristo, we all love a good revenge story. Right now, my current favorite is a wholesome nerdy tale told by Troy Hunt.

You likely already know Hunt as the force behind Have I Been Pwned, an invaluable security resource for us normies on the internet. The website tells you if your email address or phone number has been found in data breaches, and if you’re so inclined, lets you register for notifications should your info become exposed later on.

But he also documents his various side projects. His latest: Dishing a little return pain to spammers for stealing time from him. The punishment involves sending them to what he calls “password purgatory.”

Were you unable to attend Transform 2022? Check out all of the summit sessions in our on-demand library now! Watch here.

The single point agenda for fast-growth enterprises today is superlative customer experience. As forward-looking organizations strategize, customer focus is at the core of any digital transformation initiative. The technology must be agile and intelligent to ensure a positive customer experience from day one. And if you think you have time to iron out your customer delight checkpoints, think again. Retail customers have indicated time and time again that they’re willing to walk away from brands after just one bad experience.

As enterprises revisit their tech stack to level up their customer experience, customer relationship management (CRM) is the ubiquitous starting point as it is a vast river from which millions of rivulets of information flow. So, how do we draw the pathways that interconnect these rivulets to form data streams that help sales teams sail straight to desirable customer outcomes?

A universal coronavirus vaccine “could solve the problem of endless new waves of disease caused by variants with reduced vaccine sensitivity”.


Researchers at the Francis Crick Institute in London have shown that a specific area of the SARS-CoV-2 spike protein is a promising target for a pan-coronavirus vaccine that could offer protection against new variants, as well as common colds, and help prepare for future pandemics.

Developing a vaccine against multiple coronaviruses is a challenge because this family of viruses have many key differences, frequently mutate, and generally induce incomplete protection against reinfection. This is why people can suffer repeatedly from common colds, and why it is possible to be infected multiple times with different variants of SARS-CoV-2.

A pan-coronavirus vaccine would need to trigger antibodies that recognise and neutralise a range of coronaviruses – stopping the virus from entering host cells and replicating.

Researchers at Tel Aviv University and the University of Lisbon have jointly identified and synthesized a small molecule that could be a more accessible and effective alternative to an antibody that is successfully used to treat a range of cancers. Behind the groundbreaking development is an international team of researchers led by Prof. Ronit Sachi-Fainaro, Head of the Center for Cancer Biology Research and Head of the Laboratory for Cancer Research and Nanomedicine at the Sackler Faculty of Medicine, Tel Aviv University, and Prof. Helena Florindo and Prof. Rita Guedes from the Research Institute for Medicines at the Faculty of Pharmacy, University of Lisbon. The results of the study were published in the Journal for ImmunoTherapy of Cancer.

“In 2018, the Nobel Prize in Medicine was awarded to James Allison and Tasuku Honjo for their contribution to the study of immunotherapy, the treatment of cancer through activation of the immune system,” says Prof. Satchi-Fainaro, a 2020 Kadar Family Award recipient. “Honjo discovered that called T cells express the protein PD-1 that disables the T-cells’ own activity when it binds to the protein PD-L1 expressed in cancer cells. In fact, the interaction between PD-1 and PD-L1 allows cancer cells to paralyze the T cells, preventing them from attacking the cancer cells. Honjo developed antibodies that neutralize either PD-1 or PD-L1, thereby releasing the T cells to fight cancer effectively.”

Machine-learning researchers make many decisions when designing new models. They decide how many layers to include in neural networks and what weights to give inputs at each node. The result of all this human decision-making is that complex models end up being “designed by intuition” rather than systematically, says Frank Hutter, head of the machine-learning lab at the University of Freiburg in Germany.

A growing field called automated machine learning, or autoML, aims to eliminate the guesswork. The idea is to have algorithms take over the decisions that researchers currently have to make when designing models. Ultimately, these techniques could make machine learning more accessible.

One convenient way to manipulate nanoscale objects with remote controllability is actuation and propulsion by light, which is largely based on optical and photothermal-induced forces. Unfortunately, the output of optical and photothermal-induced forces is small and speed is slow. This changes with a novel and intriguing nanoactuation system: plasmonic nanodynamite. This system can be optically triggered to eject gold nanobullets with an initial speed of up to 300 m/s.

From Alice in Wonderland to The Lord of the Rings, our stories have long depicted magical worlds hidden underground. Yet the most magical account of all might turn out to be reality, as scientists reveal a complex network of reactions between plants, fungi, bacteria, and more, interacting below the soil surface to support the foundations of life. At USDA’s Agricultural Research Service, one part of the research into this intricate underground world involves identifying techniques that will keep nitrogen—a vital element for plant growth—in the soil.

Like all good stories, this one has heroes and villains whose actions can wreak havoc or save us. When properly sequestered underground, some forms of nitrogen like ammonium and nitrate perform heroic feats, fertilizing the plants that we depend on for our food. Yet when they escape the soil in the wrong ways, they morph into closely-related super-villains malignant forms of nitrogen like nitrous oxide that, in the atmosphere, is 300 times more powerful than carbon dioxide in trapping heat, and lingers far longer. In fact, N2O is the largest source of greenhouse gas from agriculture. Escaped nitrogen can also get into groundwater or run off fields and into waterways; once there, it can fuel algae blooms in coastal waters that consume oxygen, harming fish and other aquatic creatures.

View insights.


An image of a kangaroo has been identified as Australia’s oldest known rock painting, dated to over 17,000 years old.

The two-metre-long kangaroo is painted on the ceiling of a rock shelter on the Unghango clan estate, in Balanggarra country in the north-eastern Kimberley region, WA.

A research team led by Damien Finch from the University of Melbourne used radiocarbon dating to determine the ages of mud-wasp nests below and above the painting.