Toggle light / dark theme

A new approach to an age-old question.

Black holes are among some of the most mysterious objects in the Universe. They are the remnants of massive stars that have reached the end of their life cycles and collapsed into a region of spacetime that is incredibly dense. Their gravitational force is so strong that nothing can escape their surface.


Much like water gushing down a drain, the very fabric of space (and time) also appears to be draining away within some of the most enigmatic things in the universe — black holes. But, what exactly are they?

Speaking at the Longevity Leaders conference earlier this year, King’s College London Professor Georgina Ellison-Hughes shared a fascinating insight into her work to establish the adult heart as a self-renewing organ with regenerative capacity.

Longevity. Technology: The heart is generally considered a “post-mitotic” organ, or one without regenerative capacity. As we age and encounter chronic disease, senescent cells accumulate in the heart, just as they do in other tissues and organs. Ellison-Hughes’ work has shown that cellular senescence may impact the efficacy of regenerative therapies, and that senolytics have the potential to rejuvenate the heart’s capacity to regenerate. We caught up with the professor to learn more.

Cellular senescence is one of the nine hallmarks of aging. It occurs when our cells stop reproducing and enter a zombie state where they refuse to die – hanging around and causing problems throughout our bodies. Ellison-Hughes is professor of regenerative muscle physiology at King’s and in 2019 was co-author of a study in Aging Cell, which found that senescent cells impaired regeneration in the human heart.

Current severe heatwaves that will likely increase in severity and frequency in the future are driving a rise in the use of air conditioners, threatening the environment with their high energy consumption and refrigerants with high warming potential. A new study finds that switching to propane as a refrigerant could lessen the global temperature increase from space cooling.

We spend enormous amounts of energy on fighting off the heat in the summer, or throughout the whole year at lower latitudes—about one-tenth of the total worldwide electricity supply. If current temperature trends continue, the energy demands of space-coolers will more than triple by 2050. Apart from the rise in , space-coolers also threaten the in different ways: by using halogenated refrigerants with high potential.

Split-air conditioners (Split ACs) that use an indoor and an outdoor air unit connected by pipes are the most common appliances used for space-cooling. They mostly utilize HCFC-22 and HFC-410 as refrigerants, both of them characterized by a very high global warming potential score, up to 2,256—meaning that they trap up to 2,256 times more heat than over 100 years. Urged by the Kigali Amendment to the Montreal Protocol, many manufacturers are looking for alternative refrigerants with lower global warming potential scores, such as HFC-32. However, with a global warming potential score of 771, HFC-32 still poses a significant climate hazard.

There’s still plenty of room at the bottom to generate piezoelectricity. Engineers at Rice University and their colleagues are showing the way.

A new study describes the discovery of piezoelectricity—the phenomenon by which mechanical energy turns into —across phase boundaries of two-dimensional materials.

The work led by Rice materials scientists Pulickel Ajayan and Hanyu Zhu and their colleagues at Rice’s George R. Brown School of Engineering, the University of Southern California, the University of Houston, Wright-Patterson Air Force Base Research Laboratory and Pennsylvania State University appears in Advanced Materials.