A single chemical is key to controlling when hair follicle cells divide, and when they die. This discovery could not only treat baldness, but ultimately speed wound healing because follicles are a source of stem cells.
A large percentage of a building’s energy usage is consumed by heating and cooling, but a new dynamic shading system designed by researchers at the University of Toronto could help. Inspired by the skin of krill, the system uses cells of blooming pigment that can block light on demand.
Krill are tiny marine organisms that are usually transparent, but have the ability to move pigments around in the cells beneath their skin, allowing them to turn darker to protect themselves from UV damage in bright sunlight. This, the UToronto team reasoned, would be a useful ability for windows and building facades to have.
A team of researchers at Istituto Italiano di Tecnologia’s Bioinspired Soft Robotics Laboratory has developed a new pleat-based soft robotic actuator that can be used in a variety of sizes, down to just 1 centimeter. In their paper published in the journal Science Robotics, the group describes the technology behind their new actuator and how well it worked when they tested it under varied circumstances.
Engineers working on soft robotics projects have often found themselves constrained by standard pneumatic artificial muscle actuators, which tend to only work well at a given size due to the large number of complex parts. In this new effort, the researchers have added a new feature to such actuators that requires fewer parts, resulting in a smaller actuator.