TikTok has denied reports of a data breach after a hacker group claimed to have gained access to information on two billion of its users.
Ransomware hackers are abusing an anti-cheat system driver for the extremely popular game Genshin Impact to disable antivirus software.
The droppers are designed to drop a new version of SharkBot, dubbed V2 by Dutch security firm ThreatFabric, which features an updated command-and-control (C2) communication mechanism, a domain generation algorithm (DGA), and a fully refactored codebase.
Fox-IT said it discovered a newer version 2.25 on August 22, 2022, that introduces a function to siphon cookies when victims log in to their bank accounts, while also removing the ability to automatically reply to incoming messages with links to the malware for propagation.
Samsung suffered a data breach that exposed some personal information from its U.S. customers.
Everything we do as living organisms is dependent, in some capacity, on time. The concept is so complex that scientists still argue whether it exists or if it is an illusion.
In this video, astrophysicist Michelle Thaller, science educator Bill Nye, author James Gleick, and neuroscientist Dean Buonomano discuss how the human brain perceives of the passage of time, the idea in theoretical physics of time as a fourth dimension, and the theory that space and time are interwoven.
Thaller illustrates Einstein’s theory of relativity, Buonomano outlines eternalism, and all the experts touch on issues of perception, definition, and experience.
Because of their unique physical, photonic, thermal, and electronic capabilities, two-dimensional (2D) nanostructures have exhibited tremendous promise in the domains of bioengineering, sensing, and energy storage.
Study: Two Dimensional Silicene Nanosheets: A New Choice of Electrode Material for High-Performance Supercapacitor. Image Credit: Quardia/Shutterstock.com.
Nonetheless, combining silicon-based nanomaterials into high-performance power storage systems remains a largely undeveloped subject because of the complex manufacturing process. New work published in the journal ACS Applied Materials & Interfaces hope to address this problem by effectively integrating silicene nanosheets into a high-voltage supercapacitor.
The introduction of topology in photonic systems has attracted considerable attention not only for the elaborate molding of light but also for its practical applications in novel photonic devices. Originally, the quantum Hall effect of light was realized in photonic crystals (PCs) by introducing external electric or magnetic fields to break the time-reversal symmetry (TRS).
Instead of breaking the TRS, the quantum spin-Hall effect of light has been achieved in TRS-preserved systems where photonic pseudospins can be constructed. Recently, the valley Hall effect of light has been realized by introducing the binary valley degree of freedom (DoF) into photonic systems. One of the vital features of the valley Hall effect is the nontrivial photonic band gap, which is characterized by the nonzero valley Chern number.
Furthermore, valley-dependent edge modes are supported at the domain wall which consists of two PCs with opposite-valley Chern numbers. The valley Hall effect of light is commonly realized in a triangular-lattice PC with broken mirror symmetry or in a honeycomb-lattice PC with broken spatial inversion symmetry, and it is compatible with existing nanophotonic fabrication technique.
Researchers from Linköping University and the Royal Institute of Technology in Sweden have proposed a new device concept that can efficiently transfer the information carried by electron spin to light at room temperature—a stepping stone toward future information technology. They present their approach in an article in Nature Communications.
Light and electron charge are the main media for information processing and transfer. In the search for information technology that is even faster, smaller and more energy-efficient, scientists around the globe are exploring another property of electrons —their spin. Electronics that exploit both the spin and the charge of the electron are called “spintronics.”
Like the Earth, an electron spins around its own axis, either clockwise or counterclockwise. The handedness of the rotation is referred to as spin-up and spin-down states. In spintronics, the two states represent the binary bits and thus carry information. The information encoded by these spin states can be converted by a light-emitting device into light, which then carries the information over a long distance through fiber optics. The transfer of quantum information opens the possibility to exploit both electron spin and light, and the interaction between them, a technology known as “opto-spintronics.”
so-called qubits, to perform computations much faster than any classical computer ever could.
While multiple frontrunner startups have explored various technology platforms, from superconducting qubits and ion trap systems to diamond-based quantum accelerators, scaling the number of qubits from a few dozen to hundreds, thousands, and eventually millions of qubits has remained notoriously difficult. But this might change with photonic quantum computing.
The startup ORCA Computing builds photonic quantum computers that use photons, the fundamental particles of light, as qubits. Using quantum memories and established telecommunications technology, it can scale its devices more easily and integrate with existing computing infrastructure e.g. in data centers. Based on the core memory technology developed by Kris Kaczmarek, ORCA was officially co-founded by Ian Walmsley, Richard Murray, Josh Nunn, and Cristina Escoda in Oxford in the fall of 2019. This summer 2022, it has raised a $15M Series A led by Octopus Ventures and joined by Oxford Science Enterprises, Quantonation, and Verve Ventures, with additional, project-based funding provided by Innovate UK. Previous investors also include Atmos Ventures and Creative Destruction Lab.
Artificial intelligence has the potential to change human existence as we know it, but can it make a decent movie?