A recent study from Umeå University in Sweden found that hereditary traits and factors such as obesity, education, and personality could play a role in tooth decay and gum disease. Tooth decay and periodontitis, also known as gum disease, are among the most common diseases around the world.
Summary: The development of a child’s general and grammatical linguistic abilities between the ages of 3 to 4 is accompanied by the maturation of brain structures within the “language network”.
Source: RUB
Anyone who has ever learned a foreign language knows how laborious it is to acquire vocabulary and grammar. In contrast, children acquire their first language seemingly effortlessly. By the age of four, many children are already speaking without errors and can draw on a large vocabulary.
Tapping Biological Innovation In Nature For Humanity — Dr. Seemay Chou Ph.D., CEO, Arcadia Science
Dr. Seemay Chou, Ph.D. is the Co-Founder, CEO, and Board Member of Arcadia Science (https://www.arcadia.science/), a research and development company focusing on under researched areas in biology, with a specific focus on novel model organisms that haven’t been traditionally studied in the lab.
The goals of Arcadia Science are to unlock the knowledge and ingenuity contained within a wide range of diverse species, uncover how evolution has solved limitless problems, and through revealing this untapped biological innovation, generate new technologies and products.
Dr. Chou is also the co-founder of Trove Biolabs (https://www.trovebiolabs.com/), a startup focused on harnessing novel molecules found in tick saliva for skin therapies.
Dr. Chou joined Arcadia from UCSF where she was an Assistant Professor in Biochemistry and Biophysics.
The Orion spacecraft had a brief power issue on Sunday (Dec. 4) but did complete its planned engine burn to return home as planned today (Dec. 5).
Genetically engineering humans is a controversial topic. Some people believe that it is unethical, while others believe that it could be beneficial to humanity. There are pros and cons to both sides of the argument, and it is important to consider all of them before making a decision whether we should be genetically engineering humans or not.
New technology will allow for custom made skin transplants and possibly make bones and organs, too.
Our Wolfram Physics Project has provided a surprisingly successful picture of the underlying (deeply computational) structure of our physical universe. I’ll talk here about how our perception of that underlying structure is determined by what seem to be key features of our consciousness—and how this leads to detailed laws of physics as we experience them. Our Physics Project has led to the concept of the ruliad—the entangled limit of all possible computations—which seems to represent a common underlying structure from which both physics and mathematics emerge. I’ll talk about the comparison between physical and mathematical observers, and how their common features in consciousness lead to implications for general laws of “bulk mathematics”.
Stephen Wolfram is at his jovial peak in this technical interview regarding the Wolfram Physics project (theory of everything).
Sponsors: https://brilliant.org/TOE for 20% off. http://algo.com for supply chain AI.
Link to the Wolfram project: https://www.wolframphysics.org/
Patreon: https://patreon.com/curtjaimungal.
Crypto: https://tinyurl.com/cryptoTOE
PayPal: https://tinyurl.com/paypalTOE
Twitter: https://twitter.com/TOEwithCurt.
Discord Invite: https://discord.com/invite/kBcnfNVwqs.
iTunes: https://podcasts.apple.com/ca/podcast/better-left-unsaid-wit…1521758802
Pandora: https://pdora.co/33b9lfP
Spotify: https://open.spotify.com/show/4gL14b92xAErofYQA7bU4e.
Subreddit r/TheoriesOfEverything: https://reddit.com/r/theoriesofeverything.
Merch: https://tinyurl.com/TOEmerch.
TIMESTAMPS:
00:00:00 Introduction.
00:02:26 Behind the scenes.
00:04:00 Wolfram critiques are from people who haven’t read the papers (generally)
00:10:39 The Wolfram Model (Theory of Everything) overview in under 20 minutes.
00:29:35 Causal graph vs. multiway graph.
00:39:42 Global confluence and causal invariance.
00:44:06 Rulial space.
00:49:05 How to build your own Theory of Everything.
00:54:00 Computational reducibility and irreducibility.
00:59:14 Speaking to aliens / communication with other life forms.
01:06:06 Extra-terrestrials could be all around us, and we’d never see it.
01:10:03 Is the universe conscious? What is “intelligence”?
01:13:03 Do photons experience time? (in the Wolfram model)
01:15:07 “Speed of light” in rulial space.
01:16:37 Principle of computational equivalence.
01:21:13 Irreducibility vs undecidability and computational equivalence.
01:23:47 Is infinity “real”?
01:28:08 Discrete vs continuous space.
01:33:40 Testing discrete space with the cosmic background radiation (CMB)
01:34:35 Multiple dimensions of time.
01:36:12 Defining “beauty” in mathematics, as geodesics in proof space.
01:37:29 Particles are “black holes” in branchial space.
01:39:44 New Feynman stories about his abjuring of woo woo.
01:43:52 Holographic principle / AdS CFT correspondence, and particles as black holes.
01:46:38 Wolfram’s view on cryptocurrencies, and how his company trades in crypto [Amjad Hussain]
01:57:38 Einstein field equations in economics.
02:03:04 How to revolutionize a field of study as a beginner.
02:04:50 Bonus section of Curt’s thoughts and questions.
Just wrapped (April 2021) a documentary called Better Left Unsaid http://betterleftunsaidfilm.com on the topic of “when does the left go too far?” Visit that site if you’d like to watch it.
The use of smartphones has become an increasingly popular behaviour in people’s lives. However, an increased number of people find it difficult to minimise the use of smartphones, leading to the emergence of smartphone-addictive behaviours (Panova and Carbonell, 2018; Busch and McCarthy, 2021). In particular, the rapid spread of coronavirus disease 2019 around the world has led to a dramatic increase in the number of smartphone addicts due to home isolation (Caponnetto et al., 2021). Smartphone addiction is an emerging behavioural addiction, which refers to excessive dependence on and abuse of smartphones by individuals (Kwon et al., 2013; Billieux et al., 2015). Notably, smartphone addiction has been reported to have negative impacts on individuals’ cognitive functions, such as attention (Choi et al., 2021; Lee et al., 2021), perception (Dong et al., 2014) and memory (Hartanto and Yang, 2016; Tanil et al., 2020). Nevertheless, the influence of smartphone addiction on individuals’ advanced cognition is still unclear. Smartphone addiction may impair flexible cognitive processes (Dong et al., 2014), such as those that contribute to creative cognition. However, to our knowledge, the influence of smartphone addiction on creative cognition has not been explored.
Given the negative effects and high incidence of smartphone addiction (Zou et al., 2021), it is essential to uncover the underlying mechanisms, especially the neural mechanisms, by which smartphone addiction affects creative cognition. Creative cognition is defined as the ability to generate original and useful products (Sternberg and Lubart, 1999). It is a core cognitive element that allows for daily flexible problem solving and the generation of new ideas. The main components of creative cognition are (i) overcoming the semantic constraints of existing knowledge, which involves goal-directed behaviour through cognitive control, and (ii) building unusual associations to expand the existing structure of knowledge, which involves the spontaneous and unconstrained generation of novel associations (Ward et al., 1997; Abraham, 2014; Marron and Faust, 2019).
According to the problematic mobile phone use model (Billieux et al., 2015), the lack of planning or reduced cognitive control is a crucial contributor to smartphone addiction behaviour. Previous studies have also indicated that impaired cognitive control is a prominent feature of smartphone addicts, characterised by an inability to focus on task-related information and an inability to suppress dominant, automatic responses (Van Deursen et al., 2015; Li et al., 2021). In fact, previous studies have emphasised the contribution of cognitive control to the generation of creative ideas (Beaty et al., 2016; Benedek and Fink, 2019). During creative idea generation, known ideas are often initially retrieved, which acts as a source of interference allowing the retrieval process to focus on familiar and dominant ideas (Abraham, 2014). In this context, cognitive control is needed to drive the retrieval process of novel and remote information.