Toggle light / dark theme

Choanoflagellates, animals’ closest relatives, have pluripotency genes, reshaping views on their evolution.


The research highlights how evolution repurposes existing genetic tools, turning them into versatile drivers of innovation. This adaptability underscores how foundational processes in unicellular organisms laid the groundwork for the development of complex life forms.

Beyond rewriting evolutionary biology, the findings could revolutionize regenerative medicine. Understanding how ancient genes enabled pluripotency offers new pathways to refine stem cell therapies and enhance cell reprogramming techniques.

Scientists from the Biology Centre of the Czech Academy of Sciences found forty new freshwater viruses infecting aquatic microorganisms this year. The first one, which they isolated and described in detail, was named Budvirus after the South Bohemian capital České Budějovice. It belongs to “Giant Viruses” and it infects unicellular algae called cryptophytes.

Researchers have confirmed that this virus has an important role in the ecosystem, as it controls algal bloom, helping to maintain balance in the aquatic environment. The discoveries of all the viruses were made at the Římov reservoir near České Budějovice, which has been regularly monitored by South Bohemian hydrobiologists for five decades and is one of the most studied freshwater reservoirs in Europe. The work is published in The ISME Journal.

Although we have freshwater ecosystems such as lakes, ponds, reservoirs and rivers all around us, their microscopic representatives, especially viruses and bacteria, are still a little-explored area. A drop of water can contain a million bacteria and ten times more viruses, but only a handful of them have been described. Recent methods, such as environmental DNA analysis, are making great strides in the study of the aquatic microworld. This is also one of the methods used by the Czech scientific team.

This robotic Labrador puppy has been created in collaboration with the legendary Jim Henson’s Creature Shop.


A US-based company, Tombot, has unveiled Jennie – a realistic robotic puppy. This battery-powered Lab reacts to human touch, wags its tail, and even barks when you tell it to.

This robotic companion is designed to bring joy and comfort to those who need it most. Jennie has been designed to offer companionship to people battling dementia, stress, anxiety, Posttraumatic Stress Disorder (PTSD), and depression.

Jennie is equipped with various features, including real puppy sounds, software updates, interactive sensors, voice commands, a rechargeable battery, and can be controlled through a smartphone app.

Our bodies divest themselves of 60 billion cells every day through a natural process of cell culling and turnover called apoptosis.

These cells — mainly blood and gut cells — are all replaced with new ones, but the way our bodies rid themselves of material could have profound implications for cancer therapies in a new approach developed by Stanford Medicine researchers.

They aim to use this natural method of cell death to trick cancer cells into disposing of themselves. Their method accomplishes this by artificially bringing together two proteins in such a way that the new compound switches on a set of cell death genes, ultimately driving tumor cells to turn on themselves. The researchers describe their latest such compound in a paper published Oct. 4 in Science.

Microsoft today released updates to plug at least 89 security holes in its Windows operating systems and other software. November’s patch batch includes fixes for two zero-day vulnerabilities that are already being exploited by attackers, as well as two other flaws that were publicly disclosed prior to today.

The zero-day flaw tracked as CVE-2024–49039 is a bug in the Windows Task Scheduler that allows an attacker to increase their privileges on a Windows machine. Microsoft credits Google’s Threat Analysis Group with reporting the flaw.

Sometimes there are slightly different versions, or sequences of genes. There are several versions of the apolipoprotein E (APOE) gene, for example. One of them, called APOE4, has been linked to a much higher risk of developing Alzheimer’s disease, and carriers often have worse forms of the disease compared to carriers of other forms like APOE3. There are immune cells in the brain called microglia that help protect the brain from damage and harm. But when APOE4 is expressed, microglia seem to start to cause inflammation, and misfolded proteins to form in the brain, which can lead to serious problems. The findings have been reported in Cell Stem Cell.

In this work, the researchers developed a mouse model that could generate the human APOE4 protein in their brains. Next, the investigators eliminated microglia from these mouse brains. The formation of two misfolded proteins that are hallmarks of Alzheimer’s diseases: amyloid and tau, was halted.

Originally published on Towards AI.

When it comes to artificial intelligence (AI), opinions run the gamut. Some see AI as a miraculous tool that could revolutionize every aspect of our lives, while others fear it as a force that could upend society and replace human ingenuity. Among these diverse perspectives lies a growing fascination with the cognitive abilities of AI: Can machines truly “understand” us? Recent research suggests that advanced language models like ChatGPT-4 may be more socially perceptive than we imagined.

A recent study published in Proceedings of the National Academy of Sciences (PNAS) reveals that advanced language models can now match a six-year-old child’s performance in theory of mind (ToM) tasks, challenging our assumptions about machine intelligence.