© All Right Reserved Science World 2022
Theme Trend News By WP News Theme
Trapman Bermagui.
Off the coast of New South Wales in Australia, a deep-sea angler who goes by the internet nickname Trapman Bermagui pulled in a strange shark at a depth of about 2,130 feet (650 meters).
Overall, 86 percent of the survey respondents said they’re likely or extremely likely to want to stick with a four-day work week after the trial ends in three months.
Trials of this sort are becoming more popular; Spain, Scotland, Japan, and New Zealand have all looked into or trialed a reduced work week. Before the UK trial, the largest to date took place in Iceland in 2021, and it was broadly considered a success. The 2,500 participants reported decreased stress, increased energy levels, improved focus, more independence and control over their pace of work, and less conflict between their work and home lives. Managers reported boosts in employee morale, with productivity levels maintained if not improved.
Eighty-six percent of Iceland’s working population has subsequently either moved to a shorter work week or been given the option to do so. That’s a high percentage, but a small number compared to most European countries; Iceland’s total population is around 343,000, and it’s a highly equitable society in terms of income.
Blainjett Aviation announced that initial testing of its hemi-rotor aerodynamic concept has confirmed its potential to deliver faster, more efficient performance in VTOL aircraft. Subscale tests demonstrated the novel configuration’s net positive lift and low drag through the ascent/hover, cruise, and descent/hover phases of flight.
The startup is applying the hemi-rotor concept to a subscale drone as part of a path to demonstrating that the configuration can scale to larger unmanned or manned aircraft in eVTOL applications from package delivery and cargo to transport and tactical military roles. Blainjett’s hemi-rotor design situates familiar vertical lift rotors partially inside opposite sides of an enclosed fuselage. The airfoil-shaped fuselage also houses a pair of electric motors to drive the lift-rotors. Situated in the empennage above an inverted V-tail, the third motor powers a pusher prop.
In a hover, conventional open-rotors generate an even amount of lift all the way around. But when a traditional rotorcraft flies forward, its rotor blades both advances forward into the relative wind and retreat from it during rotation. This yields a dissymmetry of lift on opposing sides of the rotor arc, eventually creating a hard speed limit.
Circa 2015 face_with_colon_three
Researchers have built the world’s first artificial neuron that’s capable of mimicking the function of an organic brain cell — including the ability to translate chemical signals into electrical impulses, and communicate with other human cells.
These artificial neurons are the size of a fingertip and contain no ‘living’ parts, but the team is working on shrinking them down so they can be implanted into humans. This could allow us to effectively replace damaged nerve cells and develop new treatments for neurological disorders, such as spinal cord injuries and Parkinson’s disease.
Crucially, they showed that the synapses were capable of Hebbian learning, the process by which the strength of the connection between two neurons increases or decreases based on activity. This is key to the way information is encoded into the brain, with the strengths of connections between neurons controlling the function of different brain circuits.
In biological neurons this ability to alter the strength of connections—known as plasticity—operates at two distinct timescales. Over shorter timescales, regular firing of the neuron leads to a buildup of ions that temporarily increase the ease with which signals pass across. In the long term though, regular activity can cause new receptors to grow at a synapse, resulting in more durable increases in the strength of the connection.
With the artificial synapses, short-term plasticity operates in much the same way due to a buildup of ions. But boosting the connection strength in the long term relies on using voltage pulses to essentially grow new material out of a soup of chemical precursors at the synapse, which increases its conductivity.
Lab experiments pinpoint extra brain growth orchestrated by a single gene change in modern humans.
Circa 2018 face_with_colon_three
A gene that evolved in humans over 3 millions years ago accelerated brain growth — but it came with a serious catch.
Construction data can quickly scale into gigabytes and terabytes of data. The field is complicated because teams use various file formats to design, construct and operate a building or facility. Teams must often load the whole file into proprietary rendering tools before showing off a new design or collaborating on schedules. These files can be even more complex when building out large-scale digital twins of whole cities like Helsinki or Singapore.
Bentley Systems hopes to change that. At a technology demonstration event in London, Bentley showed off a new 3D streaming codec for the infrastructure metaverse called 3DFT. It’s already running on the Epic Unreal Engine, and Bentley plans to support other platforms down the road.
3DFT is not the first format for streaming metaverse data. The GIS industry has been streaming 2D data for years using tiles. And the Open Geospatial Consortium has been working on the 3D Tiles standard to extend streaming into the third dimension.