Menu

Blog

Page 4582

Sep 24, 2022

The Doomsday Explosive! (The Neutronium Bomb)

Posted by in categories: existential risks, particle physics

Neutronium was the material used in the hull of the doomsday machine in Star Trek.

Now I’m not terribly sure what the mechanical properties of neutronium would be like. It certainly is very dense (about a billion tons per cm3, about the volume of the end of your little finger), but it interacts with matter only weakly. I would expect both it to be pretty inefficient at stopping both electromagnetic radiation (neutrons only have a magnetic moment), and matter.

Continue reading “The Doomsday Explosive! (The Neutronium Bomb)” »

Sep 24, 2022

What is neutronium?

Posted by in categories: 3D printing, space

Have you ever been watching a sci-fi show like Star Trek or Stargate, and someone mentions neutronium? Ever wonder what neutronium even is? I this video I give a quick run down of the interesting properties and meanings of this very strange, and very dangerous hypothetical element.

Want to help the channel? You can via

Continue reading “What is neutronium?” »

Sep 24, 2022

Traditional computers can solve some quantum problems

Posted by in categories: chemistry, quantum physics, robotics/AI

There has been a lot of buzz about quantum computers and for good reason. The futuristic computers are designed to mimic what happens in nature at microscopic scales, which means they have the power to better understand the quantum realm and speed up the discovery of new materials, including pharmaceuticals, environmentally friendly chemicals, and more. However, experts say viable quantum computers are still a decade away or more. What are researchers to do in the meantime?

A new Caltech-led study in the journal Science describes how tools, run on , can be used to make predictions about and thus help researchers solve some of the trickiest physics and chemistry problems. While this notion has been shown experimentally before, the new report is the first to mathematically prove that the method works.

“Quantum computers are ideal for many types of physics and materials science problems,” says lead author Hsin-Yuan (Robert) Huang, a graduate student working with John Preskill, the Richard P. Feynman Professor of Theoretical Physics and the Allen V. C. Davis and Lenabelle Davis Leadership Chair of the Institute for Quantum Science and Technology (IQIM). “But we aren’t quite there yet and have been surprised to learn that classical machine learning methods can be used in the meantime. Ultimately, this paper is about showing what humans can learn about the physical world.”

Sep 24, 2022

National Ignition Facility’s laser-fusion milestone ignites debate

Posted by in category: energy

After failing to reproduce last year’s record-breaking fusion-energy shot, scientists at the US National Ignition Facility have gone back to the drawing board. Edwin Cartlidge discusses their next steps.

Sep 24, 2022

Raytheon ‘Beats’ Lockheed Martin & Boeing To Win Contract To Develop ‘One Of Its Kind’ Hypersonic Cruise Missile

Posted by in category: military

On September 22, the US Air Force announced that Raytheon Technologies, a US-based defense giant, had been awarded a $1 billion contract to continue the development of the Hypersonic Attack Cruise Missile (HACM).

Raytheon Technologies, which outbid Lockheed Martin and Boeing to win the contract, is now well-positioned to become the leading supplier of hypersonic cruise missiles for the USAF.

Sep 24, 2022

Interfaces boost response to electric fields in layered oxides

Posted by in category: futurism

Electrostriction enhanced by interfaces in multi-layer structure.

Sep 24, 2022

Neuroimaging study suggests mental fatigue helps preserve the chemical integrity of the brain

Posted by in categories: biotech/medical, chemistry, education, neuroscience

Strenuous cognitive work leads to an accumulation of glutamate in the prefrontal cortex, according to new research published in the journal Current Biology. The new findings suggest that mental fatigue is a neuropsychological mechanism that helps to avert the build up of potentially toxic byproducts of prolonged cognitive activity.

“Nobody knows what mental fatigue is, how it is generated and why we feel it,” said study author Antonius Wiehler, a member of the Motivation, Brain and Behavior Lab at Pitié Salpêtrière Hospital in Paris. “It has remained a mystery despite more than a century of scientific research. Machines can do cognitive tasks continuously without fatigue, the brain is different and we wanted to understand how and why. Mental fatigue has important consequences: for economic decisions, for management at work, for education at school, for clinical cure, etc.”

The researchers were particularly interested in the role of glutamate, an excitatory neurotransmitter that is involved in a variety of cognitive functions, including learning and memory. In addition, glutamate plays a role in controlling the strength of synaptic connections. Too much or too little glutamate can lead to neuronal dysfunction, so it is critical that this neurotransmitter is tightly regulated.

Sep 24, 2022

MIT professor shares in $3 million Breakthrough Prize for quantum computing discoveries

Posted by in categories: computing, mathematics, quantum physics

An MIT professor who studies quantum computing is sharing a $3 million Breakthrough Prize.

MIT math professor Peter Shor shared in the Breakthrough Prize in Fundamental Physics with three other researchers, David Deutsch at the University of Oxford, Charles Bennett at IBM Research, and Gilles Brassard at the University of Montreal. All of them are “pioneers in the field of quantum information,” the prize foundation said in a statement.

Continue reading “MIT professor shares in $3 million Breakthrough Prize for quantum computing discoveries” »

Sep 24, 2022

Science is on brink of a materials revolution

Posted by in categories: particle physics, science

Imagine a world where super-strong, super-light, flexible, durable new materials, which don’t exist in nature could be made to order. New breakthroughs in the understanding of “spin”, a characteristic of subatomic particles — like mass and charge — mean we are on the brink of such a revolution.

“The ability to control spin, one of the fundamental properties of particles, is crucial to us being able to design advanced new materials that will change the world,” says Prof Alessandro Lunghi, a physicist at Trinity College Dublin, who heads up a team investigating the phenomenon.

The scientific concepts of particle mass and charge are widely understood and known, but the third property of particles — that of spin — remains mysterious to most. It’s a concept that even many scientists struggle to understand.

Sep 24, 2022

Between two universes

Posted by in categories: computing, particle physics, quantum physics

When Mohammad Javad Khojasteh arrived at MIT’s Laboratory for Information and Decision Systems (LIDS) in 2020 to begin his postdoc appointment, he was introduced to an entirely new universe. The domain he knew best could be explained by “classical” physics that predicts the behavior of ordinary objects with near-perfect accuracy (think Newton’s three laws of motion). But this new universe was governed by bizarre laws that can produce unpredictable results while operating at scales typically smaller than an atom.

“The rules of quantum mechanics are counterintuitive and seem very strange when you first start to learn them,” Khojasteh says. “But the more you know, the clearer it becomes that the underlying logic is extremely elegant.”

As a member of Professor Moe Win’s lab, called the Wireless Information and Network Sciences Laboratory, or WINS Lab, Khojasteh’s job is to straddle both the classical and quantum realms, in order to improve state-of-the-art communication, sensing, and computational capabilities.