Toggle light / dark theme

AI, Ameca, Elon Musk and Boston Dynamics. A big month for AI. Please visit https://brilliant.org/digitalengine — a great place to learn about AI and STEM subjects. You can get started for free and the first 200 people will get 20% off a premium annual subscription.

Thanks to Brilliant for sponsoring this video.

The surprising benefits of curiosity:
https://greatergood.berkeley.edu/article/item/six_surprising…_curiosity.

A path towards autonomous machine intelligence, Yann LeCun.

Astronomers around the world are captivated by an unusually bright and long-lasting pulse of high-energy radiation that swept over Earth on Sunday, Oct. 9. The emission came from a gamma-ray burst (GRB)—the most powerful class of explosions in the universe—that ranks among the most luminous events known.

On Sunday morning Eastern time, a wave of X-rays and passed through the solar system, triggering detectors aboard NASA’s Fermi Gamma-ray Space Telescope, Neil Gehrels Swift Observatory, and Wind spacecraft, as well as others. Telescopes around the world turned to the site to study the aftermath, and new observations continue.

Called GRB 221009A, the provided an unexpectedly exciting start to the 10th Fermi Symposium, a gathering of gamma-ray astronomers now underway in Johannesburg, South Africa. “It’s safe to say this meeting really kicked off with a bang—everyone’s talking about this,” said Judy Racusin, a Fermi deputy project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who is attending the conference.

On Oct. 16, at 7:04 a.m. EDT, NASA’s Lucy spacecraft, the first mission to the Jupiter Trojan asteroids, will skim the Earth’s atmosphere, passing a mere 220 miles (350 kilometers) above the surface. By swinging past Earth on the first anniversary of its launch, Lucy will gain some of the orbital energy it needs to travel to this never-before-visited population of asteroids.

The Trojan asteroids are trapped in orbits around the sun at the same distance as Jupiter, either far ahead of or behind the giant planet. Lucy is currently one year into a twelve-year voyage. This gravity assist will place Lucy on a new trajectory for a two-year orbit, at which time it will return to Earth for a second gravity assist. This second assist will give Lucy the energy it needs to cross the main asteroid belt, where it will observe asteroid Donaldjohanson, and then travel into the leading Trojan asteroid swarm. There, Lucy will fly past six Trojan asteroids: Eurybates and its satellite Queta, Polymele and its yet unnamed satellite, Leucus, and Orus. Lucy will then return to Earth for a third gravity assist in 2030 to re-target the spacecraft for a rendezvous with the Patroclus-Menoetius binary asteroid pair in the trailing Trojan asteroid swarm.

For this first gravity assist, Lucy will appear to approach Earth from the direction of the sun. While this means that observers on Earth will not be able to see Lucy in the days before the event, Lucy will be able to take images of the nearly full Earth and moon. Mission scientists will use these images to calibrate the instruments.

In recent decades, cyberattacks have become increasingly varied, introducing various strategies to lure users onto malicious websites or prompt them to share sensitive data. As a result, computer scientists are continuously trying to develop more advanced tools to detect and neutralize these attacks.

Typosquatting, one of the most common attacks carried out online, exploits the human tendency to misspell words when typing quickly or to misread words when they have small topographical errors. Typosquatting essentially consists in the creation of malicious websites with URLs that resemble established sites, but with slight typos (e.g., “fqcebook” instead of “facebook” or “yuube” instead of “youtube”). When a user mistakenly visits these websites, they might unwillingly download malware or end up sharing personal information with the attackers.

Most existing techniques for detecting these are based on spell-checking tools. While these tools can work in some instances, they do not generalize well, as their performance typically depends on the vocabulary of words used to train them.

Rates of anxiety and depression have been increasing around the world for decades, a trend that has been sharply exacerbated by the COVID-19 pandemic. New research led by the Boyce Thompson Institute’s Frank Schroeder could ultimately lead to new therapeutics to help relieve this global mental health burden.

First discovered in the 1930s, is a neurotransmitter produced in many animals that mediates myriad behaviors, such as feeding, sleep, mood and cognition. Drugs that alter are the main weapon to treat psychological conditions like anxiety and depression, as well as eating disorders.

As a simple model for neurobiology research, the microscopic roundworm Caenorhabditis elegans has been used extensively to study serotonin’s role in regulating and . For many years, researchers thought that serotonin was made in C. elegans by one specific molecular pathway, and that serotonin was then quickly degraded. Schroeder’s team and colleagues at Columbia University now demonstrated that both of those assumptions were not quite correct.

Researchers have developed an automatic drawing machine that uses pens and pencils to draw metamaterials onto paper. They demonstrated the new approach by using it to make three metamaterials that can be used to manipulate the microwave region of the electromagnetic spectrum.

Metamaterials are artificially engineered that derive their properties from patterned microstructures, rather than the chemical composition of the materials themselves. The exact shape, geometry, size, orientation and arrangement of the structures can be used to manipulate in ways that aren’t possible with conventional materials.

“Metamaterials, especially those used as absorbers, generally need to be thin, lightweight, wide and strong, but it isn’t easy to create thin and lightweight devices using traditional substrates,” said research team leader Junming Zhao from Nanjing University in China. “Using paper as the substrate can help meet these requirements while also lending itself to metasurfaces that conform to a surface or that are mechanically reconfigurable.”

Using existing experimental and computational resources, a multi-institutional team has developed an effective method for measuring high-dimensional qudits encoded in quantum frequency combs, which are a type of photon source, on a single optical chip.

Although the word “qudit” might look like a typo, this lesser-known cousin of the qubit, or , can carry more information and is more resistant to noise—both of which are key qualities needed to improve the performance of quantum networks, quantum key distribution systems and, eventually, the quantum internet.

Classical computer bits categorize data as ones or zeroes, whereas qubits can hold values of one, zero or both—simultaneously—owing to superposition, which is a phenomenon that allows multiple quantum states to exist at the same time. The “d” in qudit stands for the number of different levels or values that can be encoded on a photon. Traditional qubits have two levels, but adding more levels transforms them into qudits.