Toggle light / dark theme

Dr. Michael Rose is an evolutionary biologist and authority in gerontology. His many years of research and keen insight establish unique methods to frame the problems of aging. Michael made scientific history with experiments manipulating the life spans of fruit flies. As a pragmatist, Michael sees beyond today’s quick fixes to examine what could be the most important changes in the longevity industry to slow down and stop aging. His view is that genomics in conjunction with machine learning is the future of longevity.

From swerving to sheltering in place, here’s how the International Space Station handles hazards on the increasingly cluttered space lanes.


The most recent maneuver happened last week when the ISS boosted itself into a higher orbit to avoid debris from a 2021 Russian anti-satellite missile test. It’s likely that such close calls will only get more common as humanity keeps cluttering up the space lanes with old satellites and bits of wreckage from collisions and missile tests. Here’s what you need to know about space debris and how to avoid it.

How does the International Space Station dodge space debris?

It’s tempting to picture astronauts piloting the ISS like it’s the Millennium Falcon, relying on their lightning reflexes (and maybe the Force) to swerve around bits of obliterated spaceships, often with mere inches to spare. The reality — like a lot of things in space flight — is much slower and happens over much bigger distances than Hollywood’s version. But it can still be extremely tense, as lives are at stake, and if something goes wrong, help is not on the way.

Let’s hangout and recap some of our most watched What If scenarios.

Get our 100 best episodes in one mind-blowing book: http://bit.ly/ytc-the-what-if-100-book.

Watch more what-if scenarios:
Planet Earth: http://bit.ly/YT-what-if-Earth.
The Cosmos: http://bit.ly/YT-what-if-Cosmos.
Technology: http://bit.ly/YT-what-if-Technology.
Your Body: http://bit.ly/YT-what-if-Body.
Humanity: http://bit.ly/YT-what-if-Humanity.

T-shirts and merch: http://bit.ly/whatifstore.

Personal computing has gotten smaller and more intimate over the years—from the desktop computer to the laptop, to smartphones and tablets, to smart watches and smart glasses.

But the next generation of wearable computing technology—for health and wellness, social interaction and myriad other applications—will be even closer to the wearer than a watch or glasses: It will be affixed to the skin.

On-skin interfaces—sometimes known as “smart tattoos”—have the potential to outperform the sensing capabilities of current wearable technologies, but combining comfort and durability has proven challenging. Now, members of Cornell’s Hybrid Body Lab have come up with a reliable, skin-tight interface that’s easy to attach and detach, and can be used for a variety of purposes—from health monitoring to fashion.

The rocket startup will attempt to catch its Electron booster in mid-air and fly it back to dry land.

U.S. and New Zealand-based Rocket Lab will perform a second mid-air recovery attempt of its Electron rocket booster after the launch of a mission called “Catch Me If You Can,” a press statement reveals.

Rocket Lab to attempt another mid-air booster recovery.


Rocket Lab.

SpaceX and NASA are gearing up towards the first crewed lunar landing since Apollo 17 in 1972.

NASA deputy associate administrator Mark Kirasich spoke highly of SpaceX’s progress on Starship in a subcommittee meeting of NASA’s Advisory Council on Monday, October 31, as per an Ars Technica report.

Now, Kirasich has provided an update on SpaceX’s fully reusable Starship launch system, stating that the private space firm is building one of its next-generation Raptor engines every day.


SpaceX / Twitter.

It could decrease reliance on palm oil to produce biofuel.

Have you ever guessed that a leftover coffee could turn into biodiesel? Here’s a remarkable development for bioscience. Seemingly, Aston University scientists produced high-quality biodiesel microalgae fed on leftover coffee. According to Aston University’s release, this development is also a breakthrough in the microalgal cultivation system.

Dr. Vesna Najdanovic, senior lecturer in chemical engineering, and Dr. Jiawei Wang were part of a team that produced algae and subsequently turned it into fuel.

The results of the study were published in the November 2022 issue of Renewable and Sustainable Energy Reviews.