Toggle light / dark theme

Nuclear fission has powered our world and medical advancements for decades, yet some of its secrets have remained elusive.

One of the biggest puzzles? What exactly happens when an atom’s nucleus splits apart at its “neck rupture” point.

Aurel Bulgac, a physics professor at the University of Washington, has been delving into this very question. He and his team set out to simulate the intricate particle dance during this critical moment of fission.

However, for the first time, two dark matter experiments have detected a neutrino fog, a dense cloud of neutrinos. This discovery is reported by researchers from XENON and PandaX — two scientific experiments that aim to detect dark matter, operating independently in Italy and China respectively.

“This is the first measurement of astrophysical neutrinos with a dark matter experiment,” Fei Gao, a scientist involved in the Xenon experiment, said.

Neutrinos are typically detected through coherent elastic neutrino-nucleus scattering (CEvNS), a process in which neutrinos interact with the entire nucleus rather than just a proton or electron.

A US bank is warning customers of a security “intrusion” that may have compromised Mastercard account numbers and other financial data.

Maryland-based Eagle Bank says it has received a notice from Mastercard, stating an unnamed US merchant allowed unauthorized access to account information between August 15th, 2023, and May 25th, 2024.

The bank revealed the breach in a filing with the Massachusetts state government.

Scientists claim that experimental studies of Higgs boson interactions face a fundamental challenge.


Scientists believe that interactions between Higgs bosons could unlock insights into new physics. Discovered at CERN’s Large Hadron Collider (LHC) in 2012, the elusive Higgs boson particle has been at the centre stage for exploring new possibilities in particle physics.

Scientists claimed that the production of Higgs boson pairs can occur within the Standard Model itself. It is such a rare process here that it has not been possible to observe it in the data collected so far.

Get a Wonderful Person Tee: https://teespring.com/stores/whatdamath.
More cool designs are on Amazon: https://amzn.to/3QFIrFX
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about recent discoveries about quantum computers.
Links:
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.22.034003
http://cjc.ict.ac.cn/online/onlinepaper/wc-202458160402.pdf.
https://arxiv.org/pdf/2307.03236
https://www.science.org/doi/10.1126/sciadv.adn8907
https://qiskit.github.io/qiskit-aer/stubs/qiskit_aer.QasmSimulator.html.
https://arxiv.org/abs/2302.00936
Previous videos:
https://youtu.be/Jl7RLrA69pg.

https://youtu.be/dPqNZ4aya8s.
#quantum #quantumcomputing #quantumcomputer.

0:00 Quantum Doom.
2:15 Recent quantum claims by Google and IBM
3:30 Why it’s so hard and what issues have to be solved.
4:50 No real world application?
6:30 Potential use: quantum internet.
8:00 Optical quantum computer that does something different.
9:50 Cracking encryption.
11:15 Conclusions and what’s next?

Support this channel on Patreon to help me make this a full time job:

Researchers at Paul Scherrer Institute (PSI), using muon spin rotation at the Swiss Muon Source (SmS), have discovered that a quantum phenomenon called time-reversal symmetry breaking takes place at the surface of the Kagome superconductor RbV₃Sb₅, occurring at temperatures up to 175 K.

This sets a new record for the temperature at which time-reversal symmetry breaking is observed among Kagome systems.