Toggle light / dark theme

Sending an object to another star is still the stuff of science fiction. But some concrete missions could get us at least part way there. These “interstellar precursor missions” include a trip to the solar gravitational lens point at 550 AU from the sun—farther than any artificial object has ever been, including Voyager.

To get there, we’ll need plenty of new technologies, and a recent paper presented at the 75th International Astronautical Congress in Milan this month looks at one of those potential technologies—electric propulsion systems, otherwise known as ion drives.

The paper aimed to assess when any existing ion drive technology could port a large payload on one of several trajectories, including a trip around Jupiter, one visiting Pluto, and even one reaching that fabled solar gravitational lens. To do so, they specified an “ideal” ion drive with characteristics that enabled optimal values for some of the system’s physical characteristics.

We might like to think of ourselves as autonomous entities but, in reality, we’re more like walking ecosystems, teeming with bacteria, viruses, and other microbes. It turns out that differences in these microbes might be as crucial to evolution and natural variation as genetic mutations are.

This novel perspective was discussed in a recent publication by Seth Bordenstein, director of Penn State’s One Health Microbiome Center, who is a professor of biology and entomology and holds the Dorothy Foehr Huck and J. Lloyd Huck Endowed Chair in Microbiome Sciences.

He, along with 21 colleagues from around the globe, collectively known as the Holobiont Biology Network, propose that understanding the relationships between microbes and their hosts will lead to a more profound understanding of biological variation.

Scientists have discovered your cholesterol levels could be significantly linked to your risk of developing dementia. And it’s not just high cholesterol that matters: fluctuating levels over several years could increase your chances of the disease by 60 per cent, suggests a new study of 10,000 people.

The research also suggests that, even if you don’t develop dementia, a large cholesterol variability – swinging from high to low levels – is linked to an increased risk of general cognitive decline by 23 per cent.

Summary: Scientists have reprogrammed mouse cells into pluripotent stem cells using a gene from choanoflagellates, single-celled organisms related to animals. This breakthrough demonstrates that key genes driving stem cell formation existed in unicellular ancestors nearly a billion years ago.

The resulting stem cells were used to create a chimeric mouse, showcasing how ancient genetic tools can integrate with modern mammalian biology. This discovery redefines the evolutionary origins of stem cells and may inform regenerative medicine advancements.

Then, in the 1980s, neutrinos from this supernova were picked up by the Irvine-Michigan-Brookhaven detector deep underground in Ohio. The discovery marked one of the first measurements of neutrinos from beyond our solar system, helped kickstart the field of observational neutrino astronomy, and provided a starting point that next-generation neutrino detectors continue to build on.

But the discovery was also lucky: The detector was built primarily to study proton decay, rather than neutrinos. “When you build a new detector with new capabilities, you’re sensitive to things that you never expected,” says Henry Sobel, a physics professor at the University of California, Irvine, and one of IMB’s original collaborators. The unexpected supernova would shape the legacy of IMB, which was recently recognized as an APS Historic Site for its role in neutrino science.

In the mid-1970s, teams of physicists were racing to build detectors that could measure proton decay, a hypothesized phenomenon that would confirm Howard Georgi and Sheldon Glashow’s new Grand Unified Theory, one that sought to unite three of the four fundamental forces of nature. The winner emerged in Painesville, Ohio, a small city northeast of Cleveland: The IMB detector, the world’s first kiloton-scale nucleon decay detector, began collecting data in 1982.

Minuscule particles of plastic are not only bad for the environment. A study led from Umeå University, Sweden, has shown that the so-called nanoplastics which enter the body also can impair the effect of antibiotic treatment. The results also indicate that the nanoplastics may lead to the development of antibiotic resistance. Even the indoor air in our homes contains high levels of nanoplastics from, among other things, nylon, which is particularly problematic.

The results are alarming considering how common nanoplastics are and because effective antibiotics for many can be the difference between life and death,” says Lukas Kenner, professor at the Department of Molecular Biology at Umeå University and one of the researchers who led the study.

Nanoplastics are plastic particles that are smaller than a thousandth of a millimetre. Due to their smallness, they can float freely in the air and have the ability to enter the body.

SpaceX was founded to increase access to space and help make life multiplanetary.

In just this year, we’ve launched 114 successful Falcon missions and counting for our commercial and government customers, deployed ~1,700 @Starlink satellites to provide high-speed internet for millions of people all around the world, and made extraordinary strides developing Starship’s capability to return humanity to the Moon and ultimately send people to Mars.

If you want to join the team and help build a more exciting future, check out the latest job openings across the company → https://www.spacex.com/careers

We all start our lives as symmetric balls of cells. In humans, during the first few weeks after fertilization, embryonic cells undergo several rounds of division, increasing their mass. Then comes gastrulation, the process that changes everything and establishes our body plan. During gastrulation, the collection of uniform cells that make up the early embryo break symmetry and reorganize into a multi-layered structure with distinct cell types.

At this pivotal moment, our body plan is set. Gastrulation also establishes the three body axes: head–tail, front–back, and left–right. This process requires cells to interact and coordinate with each other with astonishing precision. However, how this is achieved is still largely a mystery.

The Trivedi Group at EMBL Barcelona studies how cells give rise to our body plan and has now published a study in the journal Development that may enhance our understanding of early mammalian development.