Toggle light / dark theme

Discovering Advanced Civilizations: Type 1 To 7 And Minus 0 To Minus 3: How Far Can We Go?
he kardashev scale type From Type 1 To 7 And Theand Reverse Scale: How Far Can We Go?
The Kardashev scale is a method used to determine a civilization’s technological advancement, which divides civilizations into three types, with type 1 being the simplest civilization of all.
The civilization created by the human race is not yet advanced enough to be considered a type 1 civilization. How long until we reach that classification? Stay to find out.
“Introduction“
Astrophysicist Nikolai Kardashev developed the Kardashev scale in 1964 to determine some characteristics that would facilitate the search for extraterrestrial life.
After analyzing several conditions in the history of the human race, Kardashev realized that there is a need that grows as civilization does, energy.
As the human race has expanded worldwide, so needs for energy.
Suppose this is inherent in all species that become an intelligent race. In that case, a hypothetical race of aliens who come to forge a civilization as significant or more extensive than that of humans will eventually also have an energy deficit.
To solve this energy need, an extraterrestrial race must develop technologies to meet the demand for energy needed to sustain all members of their civilization.
Kardashev theorized that in this sense, there must be 3 types of civilizations:
Type 1: A civilization that can harness all the energy its home planet gives them.
Type 2: A civilization that can harness the energy of its entire solar system.
Type 3: A civilization that can harness all the energy provided by the galaxy it is in.

“A type VII or K7 civilization would travel, transcend and ultimately oversee or ”be” the Omniverse which is the collection of every single universe, multiverse, megaverse, paraverse, 11d dimension, and 1st realm (reality). Everything is in the Omniverse, and there is only one Omniverse.” In other words, such a civilization would be as closest as godly as possible.
However, the achievement of a type 7 civilization will only be the end of a very long process of technological advancement and connection with the cosmos. To get there, we would first need to go to all the other civilization types that make up the scale. Let’s see what they consist of.

Another problem with the Kardashev Scale is the assumption that advanced civilizations have an insatiable appetite for energy and that they inevitably want to expand into space. When perhaps, turning a galaxy into a huge supercomputer is the last thing an advanced civilization would want to do…
At the end of the day, what do we know? Alien intelligence may have other desires… and goals that don’t involve this kind of intergalactic imperialism.
It must have been similar reasoning that brought cosmologist John Barrow

DISCUSSIONS & SOCIAL MEDIA

Commercial Purposes: [email protected].

Scientists at the Centre for Genomic Regulation (CRG) in Barcelona have developed the first comprehensive blueprint of the human spliceosome, the most complex and intricate molecular machine found in every cell. This groundbreaking achievement, over a decade in the making, was published in the journal Science.

The spliceosome edits genetic messages transcribed from DNA, allowing cells to create different versions of a protein from a single gene. The vast majority of human genes – more than nine in ten – are edited by the spliceosome. Errors in the process are linked to a wide spectrum of diseases including most types of cancer, neurodegenerative conditions, and genetic disorders.

The sheer number of components involved and the intricacy of its function has meant the spliceosome has remained elusive and uncharted territory in human biology – until now.

Earlier this year, experiments shattered expectations by pushing the limits of what classical computing was believed to be capable of. Not only did the old fashioned binary technology crack a problem considered to be unique to quantum processing, it outperformed it.

Now physicists from the Flatiron Institute’s Center for Computational Quantum Physics in the US have an explanation for the feat which could help better define the boundaries between the two radically different methods of number-crunching.

The problem involves simulating the dynamics of what’s known as a transverse field Ising (TFI) model, which describes the alignment of quantum spin states between particles spread across a space.

Scientists at Brookhaven National Laboratory have used supercomputer simulations to predict electric charge distributions in mesons, essential for understanding the subatomic structure of matter.

Upcoming experiments at the Electron-Ion Collider (EIC) will further validate these predictions, offering new insights into how quarks and gluons interact to form visible matter.

Exploring Meson Charge Distribution

SpaceX and NASA have successfully tested the Dragon spacecraft’s reboost capabilities, enhancing the International Space Stations altitude.

This test adds to existing capabilities provided by Roscosmoss Progress and Northrop Grumman’s Cygnus spacecrafts. Alongside its reboost demonstration, the Dragon spacecraft also completed a substantial resupply mission, carrying over 6,000 pounds of supplies.

SpaceX’s Reboost Demonstration

In a paper published in Scientific Reports journal, the researchers report the potential of the lesser mealworm (the larvae of a darkling beetle species, known scientifically as Alphitobius), to consume plastic.


The icipe researchers tested the ability of the lesser mealworm to consume polystyrene, one of the major microplastics that is fast accumulating both in land and water bodies. Polystyrene waste comes from the commercial application of its most common form, styrofoam. This material is used in food storage containers, packaging of equipment, disposable plates and cups, and insulation in construction. Various methods, including chemical, thermal and mechanical, are used to recycle polystyrene. However, these approaches are expensive and they also produce toxic compounds that are harmful to human, environment and biodiversity.

“Our study showed that the mealworms can ingest close to 50% of the styrofoam. We aim to conduct further studies to understand the process through which mealworms consume polystyrene, and whether they gain any nutritional benefits from the material,” says Evalyne Ndotono, an icipe PhD scholar.

“We will also explore the mechanisms of the bacteria in the lesser mealworm in the degradation of plastic. We want to understand if the bacteria are inherent in the mealworms, or if they are a defence strategy acquired after feeding on plastic.”

By using sensor-embedded sponges and data, Vienna researchers quickly trained robots to clean washbasins.


Thanks to researchers at TU Wein in Vienna, the promise of housecleaning robots is one step closer. The team has developed a self-learning robot to mimic humans to complete simple tasks like cleaning washbasins.

While this might sound mundane, the development is very significant as hard coding a robot to move a sponge over the complex curved edges of a washbasin would be a monumental task. To this end, the research team found a hack by blending observation with tactile data from human teachers to train robots to copy the same task.