Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Spy vs. spy: A new automated removal tool can stop most remote-controlled malware

Cyberattacks can snare workflows, put vulnerable client information at risk, and cost corporations and governments millions of dollars. A botnet—a network infected by malware—can be particularly catastrophic. A new Georgia Tech tool automates the malware removal process, saving engineers hours of work and companies money.

The tool, ECHO, turns malware against itself by exploiting its built-in update mechanisms and preventing botnets from rebuilding. ECHO is 75% effective at removing botnets. Removing malware used to take days or weeks to fix, but can now be resolved in a few minutes. Once a security team realizes their system is compromised, they can now deploy ECHO, which works fast enough to prevent the from taking down an entire network.

“Understanding the behavior of the malware is usually very hard with little reward for the engineer, so we’ve made an automatic solution,” said Runze Zhang, a Ph.D. student in the School of Cybersecurity and Privacy (SCP) and the School of Electrical and Computer Engineering.

Japan Has Successfully Used Drones to Trigger and Guide Lightning Strikes — Announcing a New Era of Storm Control

The system, designed to enhance protection for critical infrastructures, has proven its ability to withstand the immense force of lightning strikes while maintaining stable flight.

New review urges rigorous testing for single-atom catalysts in industry

Many modern industrial processes depend on complex chemistry. Take fertilizer production, for example: to make it, companies must first produce ammonia, a key ingredient.

These need ingredients of their own—catalysts, which speed up reactions without being consumed or creating unwanted byproducts.

One emerging type of catalyst—known as a “single-atom” or “atomically dispersed” catalyst—is getting a lot of attention for its potential to make industrial processes cleaner and more efficient. Academic journals are overflowing with studies on them.