Menu

Blog

Page 4518

Jul 19, 2022

Scalable all-perovskite tandem solar cells with a 19.1% efficiency

Posted by in categories: solar power, sustainability

Now, researchers at the Karlsruhe Institute of Technology (KIT) have developed a prototype for fully scalable all–perovskite tandem solar modules. They were able to scale up individual perovskite cells with a power conversion efficiency of up to 23.5% at an aperture area of 0.1 square centimeters to all-perovskite tandem solar modules with an efficiency of up to 19.1% with an aperture area of 12.25 square centimeters.

The aperture area is the usable part of the surface that is not covered by electrodes, frames, or fasteners. At approximately five percent, the loss of efficiency when upscaling is relatively low. “This is the first report of an all-perovskite tandem solar module worldwide,” says Dr. Bahram Abdollahi Nejand, lead author of the publication and team leader for all-perovskite tandem solar modules.

The KIT researchers claimed this remarkable result is the first of its kind reported worldwide. To obtain this, the team increased the efficiency by optimizing the light path and reducing reflections in the solar cell architecture. They implemented an efficient layout for tandem solar modules using high-throughput laser scribing that enables the production of functional tandem solar mini-modules with two-terminal interconnected cell strips. Lastly, they used coating processes (blade coating and vacuum deposition) that are already established in industrial practice.

Jul 19, 2022

Astronomy 101: Neutron stars

Posted by in category: space

In this video, explore the various superdense remnants of massive stars, which hold between 1 and 3 times the Sun’s mass and are so dense that a teaspoon of their matter weighs about a billion tons.

Jul 19, 2022

What’s the diameter of the largest exoplanet found so far?

Posted by in category: space

Read and share your comments on this article.

Jul 19, 2022

Failures in large networks can be prevented with local focus

Posted by in categories: biotech/medical, computing, finance, transportation

We live in an increasingly connected world, a fact underscored by the swift spread of the coronavirus around the globe. Underlying this connectivity are complex networks—global air transportation, the internet, power grids, financial systems and ecological networks, to name just a few. The need to ensure the proper functioning of these systems also is increasing, but control is difficult.

Now a Northwestern University research team has discovered a ubiquitous property of a complex network and developed a novel computational method that is the first to systematically exploit that property to control the whole network using only . The method considers the computational time and information communication costs to produce the optimal choice.

The same connections that provide functionality in networks also can serve as conduits for the propagation of failures and instabilities. In such dynamic networks, gathering and processing all the information necessary to make a better decision can take too much time. The goal is to diagnose a problem and take action before it leads to a system-wide issue. This may mean having less information but being timely.

Jul 19, 2022

New ‘future-proof’ method could remove phosphorus from wastewater using bacteria

Posted by in categories: bioengineering, chemistry, climatology, physics, sustainability

A recent study from the Singapore Centre for Environmental Life Sciences Engineering (SCELSE) at Nanyang Technological University (NTU) and published in Wa | Chemistry And Physics.


This study is intriguing since one of the results of climate change is increasing water temperatures, so removing phosphorus from such waters will prove invaluable in the future, with this study appropriately being referred to as a “future-proof” method.

Continue reading “New ‘future-proof’ method could remove phosphorus from wastewater using bacteria” »

Jul 19, 2022

Flipkart-owned flight booking platform Cleartrip hit by data breach

Posted by in category: cybercrime/malcode

Flipkart-owned Cleartrip, a flight booking platform, said that it suffered a major data breach in its internal systems.

In an email to customers, the company stated, “This is to inform you that there has been a security anomaly that entailed illegal and unauthorised access to a part of Cleartrip’s internal systems.”

However, the travel company assured them that no sensitive information pertaining to a user’s account had been compromised due to this incident, apart from a few personal details.

Jul 19, 2022

Asteroid impacts create diamond materials with exceptionally complex structures

Posted by in categories: asteroid/comet impacts, energy, engineering, existential risks

Shockwaves caused by asteroids colliding with Earth create materials with a range of complex carbon structures, which could be used for advancing future engineering applications, according to an international study led by UCL and Hungarian scientists.

Published today in Proceedings of the National Academy of Sciences, the team of researchers has found that formed during a high-energy shock wave from an around 50,000 years ago have unique and exceptional properties, caused by the short-term high temperatures and extreme pressure.

The researchers say that these structures can be targeted for advanced mechanical and electronic applications, giving us the ability to design materials that are not only ultra-hard but also malleable with tunable electronic properties.

Jul 19, 2022

Researcher uses graphene for same-time, same-position biomolecule isolation and sensing

Posted by in categories: materials, particle physics

New research led by University of Massachusetts Amherst assistant professor Jinglei Ping has overcome a major challenge to isolating and detecting molecules at the same time and at the same location in a microdevice. The work, recently published in ACS Nano, demonstrates an important advance in using graphene for electrokinetic biosample processing and analysis, and could allow lab-on-a-chip devices to become smaller and achieve results faster.

The process of detecting biomolecules has been complicated and time-consuming. “We usually first have to isolate them in a complex medium in a device and then send them to another device or another spot in the same device for detection,” says Ping, who is in the College of Engineering’s Mechanical and Industrial Engineering Department and is also affiliated with the university’s Institute of Applied Life Sciences. “Now we can isolate them and detect them at the same microscale spot in a microfluidic device at the same time—no one has ever demonstrated this before.”

His lab achieved this advance by using graphene, a one-atom-thick honeycomb lattice of carbon atoms, as microelectrodes in a .

Jul 19, 2022

A quantum wave in two crystals

Posted by in categories: particle physics, quantum physics

Particles can move as waves along different paths at the same time—this is one of the most important findings of quantum physics. A particularly impressive example is the neutron interferometer: neutrons are fired at a crystal, the neutron wave is split into two portions, which are then superimposed on each other again. A characteristic interference pattern can be observed, which proves the wave properties of matter.

Such neutron interferometers have played an important role for precision measurements and research for decades. However, their size has been limited so far because they worked only if carved from a single piece of crystal. Since the 1990s, attempts have also been made to produce interferometers from two separate crystals—but without success. Now a team from TU Wien, INRIM Turin and ILL Grenoble has achieved precisely this feat, using a high-precision tip-tilt platform for the crystal alignment. This opens up completely new possibilities for quantum measurements, including research on quantum effects in a gravitational field.

Jul 19, 2022

Nanomagnets can discern wine, and could slake AI’s thirst for energy

Posted by in categories: nanotechnology, robotics/AI

Human brains process loads of information. When wine aficionados taste a new wine, neural networks in their brains process an array of data from each sip. Synapses in their neurons fire, weighing the importance of each bit of data—acidity, fruitiness, bitterness—before passing it along to the next layer of neurons in the network. As information flows, the brain parses out the type of wine.

Scientists want artificial intelligence (AI) systems to be sophisticated data connoisseurs too, and so they design computer versions of neural networks to process and analyze information. AI is catching up to the human brain in many tasks, but usually consumes a lot more energy to do the same things. Our brains make these calculations while consuming an estimated average of 20 watts of power. An AI system can use thousands of times that. This hardware can also lag, making AI slower, less efficient and less effective than our brains. A large field of AI research is looking for less energy-intensive alternatives.

Now, in a study published in the journal Physical Review Applied, scientists at the National Institute of Standards and Technology (NIST) and their collaborators have developed a new type of hardware for AI that could use less energy and operate more quickly—and it has already passed a virtual wine-tasting test.