Toggle light / dark theme

Researchers have developed a novel experimental platform to measure the electric fields of light trapped between two mirrors with a sub-cycle precision.

These electro-optic Fabry-Pérot resonators will allow for and observation of light-matter interactions, particularly in the terahertz (THz) spectral range. The study is published in the journal Light: Science & Applications.

The researchers are from the Department of Physical Chemistry at the Fritz Haber Institute of the Max Planck Society and the Institute of Radiation Physics at Helmholtz Center Dresden-Rossendorf.

Researchers at the LKS Faculty of Medicine of the University of Hong Kong (HKUMed) have invented an oral formulation of arsenic trioxide (Oral-ATO; ARSENOL) for the treatment of acute promyelocytic leukemia (APL), a blood cancer that once had a high fatality rate.

The invention and use of oral-ATO is of historic importance for medicine in Hong Kong. It is the first-ever prescription medication wholly invented and manufactured in Hong Kong, and also the first to obtain U.S., European and Japanese patents.

After more than two decades of dedicated work, the HKU research team successfully translated this Hong Kong invention into by incorporating oral-ATO into the treatment plan of APL patients. Extensive clinical studies of oral-ATO have demonstrated its high efficacy and safety in curing APL patients, with an overall survival (OS) rate exceeding 97%, along with a significant reduction in side-effects and treatment burden.

Microbial life in Yellowstone’s Lower Geyser Basin may hold clues to the evolution of life’s exploitation of oxygen, according to a recent analysis by researchers from Montana State University.

T he inhabitants of the basin’s Octopus and Conch Springs live in kelp-like, gelatinous ‘streamer’ structures that wiggle furiously in superheated currents, which hover around 88 degrees Celsius (190 degrees Farenheit). Genetically similar to ancient bacteria and archaea, t heir existence is a window into the primordial soup from which life emerged.

While these microbial communities share many traits, the springs’ environments are different in a few fundamental ways.

The appearance of the Interstellar Objects (ISOs) Oumuamua and Comet Borisov in 2017 and 2019, respectively, created a surge of interest.

What were they? Where did they come from? Unfortunately, they didn’t stick around and wouldn’t cooperate with our efforts to study them in detail. Regardless, they showed us something: Milky Way objects are moving around the galaxy.

We don’t know where either ISO came from, but there must be more – far more. How many other objects from our stellar neighbours could be visiting our Solar System?

Researchers have achieved a breakthrough in wearable health technology by developing a novel self-healing electronic skin (E-Skin) that repairs itself in seconds after damage. This could potentially transform the landscape of personal health monitoring.

In a study published in Science Advances, scientists demonstrate an unprecedented advancement in E-Skin technology that recovers over 80% of its functionality within 10 seconds of being damaged—a dramatic improvement over existing technologies that can take minutes or hours to heal.

The technology seamlessly combines ultra-rapid self-healing capabilities, reliable performance in , advanced artificial intelligence integration, and highly accurate health monitoring systems. This integration enables real-time fatigue detection and muscle strength assessment with remarkable precision.

More than 15 million people worldwide are living with spinal cord injury (SCI), which can affect their sensory and motor functions below the injury level. For individuals with SCI between C5 and C7 cervical levels, this can mean paralysis affecting their limbs and limited voluntary finger and wrist flexion, making it difficult to grasp large, heavy objects.

Now, a team of UC Berkeley engineers from the Embodied Dexterity Group has developed a to enhance grasping functionality in this population. Dubbed the Dorsal Grasper, this leverages voluntary wrist extension and uses supernumerary robotic fingers on the back of the hand to facilitate human-robot collaborative grasping.

In a study recently featured in IEEE Transactions on Neural Systems and Rehabilitation Engineering, the researchers demonstrated for the first time how the Dorsal Grasper can expand users’ graspable workspace. Test subjects found that they could easily grasp objects anywhere they could reach their arm, without having to rotate their bodies, which can cause wheelchair users to lose their balance.

We explore numerically the complex dynamics of multilayer networks (consisting of three and one hundred layers) of cubic maps in the presence of noise-modulated interlayer coupling (multiplexing noise). The coupling strength is defined by independent discrete-time sources of color Gaussian noise. Uncoupled layers can demonstrate different complex structures, such as double-well chimeras, coherent and spatially incoherent regimes. Regions of partial synchronization of these structures are identified in the presence of multiplexing noise. We elucidate how synchronization of a three-layer network depends on the initially observed structures in the layers and construct synchronization regions in the plane of multiplexing noise parameters “noise spectrum width – noise intensity”

Our hybrid EOC design extends these concepts by providing continuous tunability and the potential for adding active samples for investigations of intra-cavity light-matter interactions. In the ‘empty’ hybrid cavity investigated here, we observe a rich mode structure, spurring development of both a field-based model to quantify these cavity modes and their properties, as well as a complementary coupled-oscillator description to gain further understanding of the delicate interplay between the various sub-cavities, which thereafter constitute the hybrid EOC modes. Our detailed analysis of these theoretical vantage points will be highly valuable when considering the addition of an active material, after which the hybrid cavity optical response will become even more intricate. Integration of active materials into hybrid EOCs will yield novel access to light-matter interactions—namely access to energy exchange on sub-Rabi-cycle timescales, and furthermore local probing and even control over tunable light-matter superposition—the latter two unavailable when viewed by conventional cavity transmission techniques. Potential ‘active materials’ for these in-situ investigations of tunable light-matter interactions include conventional polar semiconductors40—oftentimes displaying very large oscillator strengths—atomically-thin monolayers or heterostructures ofion-metal dichalcogenides41, hybrid organic-inorganic 3D21,42 and 2D lead-halide perovskites43,44, and novel, magnetically-ordered systems45.

Implementation of EO sampling inside of THz cavities will also significantly advance further areas of contemporary research. As a prominent example, field-resolved probing inside a defined electromagnetic cavity will provide novel opportunities for measurements of electromagnetic vacuum field fluctuations46,47. Most notably, a high-quality factor EOC constitutes an advantageous testing ground for measurement of quantum vacuum fluctuations, by efficiently excluding sources of external radiation. Moreover, EOCs are not limited to either macroscopic environments or the THz spectral region. Although EO sampling is routinely employed up to the mid-IR spectral region9, it has recently been extended even into the visible range48, allowing for future broadband measurements of intra-cavity electric fields. Similar sampling techniques have been used to sample electric fields inside of metallic antenna-based cavities49,50, demonstrating that although on-chip photonic implementations lack the dynamic tunability, the general technique is readily implemented in other near-field contexts, including even tip-based nano-photonic applications51. Furthermore, EOCs utilizing quartz are uniquely suited candidates for chiral THz cavity phenomena52, due to quartz’s capability for straightforward and rapid measurement of vectorial electric field trajectories34.

In conclusion, we have established versatile and compact designs for a new class of active THz cavities, which allow for in-situ retrieval of intra-cavity electric fields. By developing a cavity-correction function formalism for these EOCs, we have demonstrated a rigorous and reliable method to extract absolute fields in a quantitative, and phase-resolved manner. Utilizing straightforward fabrication techniques, we tune the cavities’ quality factors and resonance frequencies. Furthermore, we have introduced a hybrid EOC, offering continuously-tunable cavity modes across the entire THz-frequency range, within a single device. This fundamental advancement lays the groundwork for accommodating additional active materials for in-situ measurement of and control over light-matter coupling. We understand the rich hybrid mode structure, including apparent signatures of strong coupling, via cavity-field and coupled-oscillator formalisms, which will be key to deciphering signatures of light-matter coupling in more complicated devices. Therefore, this work opens new dimensions of THz cavity physics, particularly in the realms of cavity-controlled ground-and excited state material properties. This includes possibilities such as cavity-enhanced THz emission, selectively-driven Floquet states53, and cavity-controlled nonlinear THz driving15,54, thus paving the way for comprehensive investigations of THz cavity quantum electrodynamics.