Jul 30, 2022
A self-healing and self-concealing silicon chip ‘fingerprint’ for stronger, hardware security
Posted by Dan Breeden in categories: computing, engineering, security
A team of researchers from the National University of Singapore (NUS) has developed a novel technique that allows Physically Unclonable Functions (PUFs) to produce more secure, unique ‘fingerprint’ outputs at a very low cost. This achievement enhances the level of hardware security even in low-end systems on chips.
Traditionally, PUFs are embedded in several commercial chips to uniquely distinguish one silicon chip from another by generating a secret key, similar to an individual fingerprint. Such a technology prevents hardware piracy, chip counterfeiting and physical attacks.
The research team from the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering has taken silicon chip fingerprinting to the next level with two significant improvements: firstly, making PUFs self-healing; and secondly, enabling them to self-conceal.