Scientists have discovered that an obscure material known as cubic boron arsenide (c-BAs) may perform much better than silicon. In fact, it may be the best semiconductor possible—demonstrating both high carrier mobility and simultaneously high thermal conductivity.
Memory and storage chip maker Micron Technology says it is shipping samples of the most bit-dense DRAM memory chips yet. Compared with its own previous generation, the 16-gigabit DRAM chip is 15 percent more power efficient and 35 percent more dense. Notably, Micron achieved the improvement without resorting to the most advanced chip-making technology, extreme ultraviolet lithography. The features that make up DRAM cells are not nearly as tiny as those on logic chips, but this advance shows that DRAM density could still shrink further in the future.
Micron says it is shipping samples of LPDDR5X chips, memory made for power-constrained systems such as smartphones. (LPDDR5X, unpacked: a revved-up twist on the low-power version of the fifth generation of the double-data-rate memory communications standard, capable of transferring 8.5 gigabits per second.) It’s the first chip made using Micron’s new manufacturing process, called 1-beta, which the company says maintains the lead it took a year ago over rivals, including Samsung and SK Hynix.
Manufacturing processes for DRAM and logic chips diverged decades ago, with logic chips shrinking transistors much more aggressively as the years went by, explains Jim Handy, a memory and storage analyst at Objective Analysis, in Los Gatos, Calif. The reason for the difference has to do with DRAM’s structure. DRAM stores a bit as charge in a capacitor. Access to each capacitor is gated by a transistor. But the transistor is an imperfect barrier, and the charge will eventually leak away. So DRAM must be periodically refreshed, restoring its bits before they drain away. In order to keep that refresh period reasonable while still increasing the density of memory, DRAM makers had to make some pretty radical changes to the makeup of the capacitor. For Micron and other major manufacturers, it now resembles a tall pillar and is made using materials not found in logic chips.
What are you working on next?
Rosendo: Our next steps…will be on the development of the manipulability of this robot. More specifically, we have been asking ourselves the question: “Now that we can stand up, what can we do that other robots cannot?”, and we already have some preliminary results on climbing to places that are higher than the center of gravity of the robot itself. After mechanical changes on the forelimbs, we will better evaluate complex handling that might require both hands at the same time, which is rare in current mobile robots.
Multi-Modal Legged Locomotion Framework with Automated Residual Reinforcement Learning, by Chen Yu and Andre Rosendo from ShanghaiTech University, was presented this week at IROS 2022 in Kyoto, Japan. More details are available on Github.
A paralyzed man who hasn’t spoken in 15 years uses a brain-computer interface that decodes his intended speech, one word at a time.
Circa 2012 face_with_colon_three
It’s not quite warp drive, but researchers are hot on the trail of building nuclear fusion impulse engines, complete with real-life dilithium crystals.
Virgin Galactic, while fighting delays in returning tourists to space, is building for the future.
The new class of space tourist ship for Virgin Galactic, called Delta, is coming together with a new deal to fly Axiom Space astronauts along with contracts to secure key suppliers, the company said in press releases this week. Delta may fly as frequently as once a week and is slated to enter service in 2026.
Evidence of high-energy neutrino emission from the galaxy NGC 1,068 has been found by an international team of scientists for the first time. First spotted in 1,780, NGC 1,068, also known as Messier 77, is an active galaxy in the constellation Cetus and one of the most familiar and well-studied galaxies to date. Located 47 million light-years away from us, this galaxy can be observed with large binoculars. The results, to be published today (November 4, 2022) in the journal Science, were shared yesterday in an online scientific webinar that gathered experts, journalists, and scientists from around the globe.
Physicists often refer to the neutrino as the “ghost particle” because they almost never interact with other matter.
The detection was made at the IceCube Neutrino Observatory. This massive neutrino telescope, which is supported by the National Science Foundation, encompasses 1 billion tons of instrumented ice at depths of 1.5 to 2.5 kilometers (0.9 to 1.2 miles) below Antarctica’s surface near the South Pole. This unique telescope explores the farthest reaches of our universe using neutrinos. It reported the first observation of a high-energy astrophysical neutrino source in 2018. The source is a known blazar named TXS 0506+056 located 4 billion light-years away off the left shoulder of the Orion constellation.
NASA and China plan to mount crewed missions to Mars in the next decade. While this represents a tremendous leap in terms of space exploration, it also presents significant logistical and technological challenges.
For starters, missions can only launch for Mars every 26 months when our two planets are at the closest points in their orbit to each other (during an “Opposition”). Using current technology, it would take six to nine months to transit from Earth to Mars.
Even with nuclear-thermal or nuclear-electric propulsion (NTP/NEP), a one-way transit could take 100 days to reach Mars.
“It is not enough to study brain connectivity with one single method, or even two,” says HBP Scientific Director and author of the Science article Katrin Amunts, who leads the Institute of Neuroscience and Medicine (INM-1) at Forschungszentrum Jülich and the C. & O. Vogt Institute of Brain Research at the University Hospital Düsseldorf. “The connectome is nested at multiple levels. To understand its structure, we need to look at several spatial scales at once by combining different experimental methods in a multi-scale approach and by integrating the obtained data into multilevel atlases such as the Julich Brain Atlas that we have developed.”
Markus Axer from Forschungszentrum Jülich and the Physics Department of the University of Wuppertal, who is the first author of the Science article, has together with his team at INM-1 developed a unique method called 3D Polarised Light Imaging (3D-PLI) to visualise nerve fibres at microscopic resolution. They trace the three-dimensional courses of fibres across serial brain sections with the aim of developing a 3D fibre atlas of the entire human brain.
Together with other HBP researchers from Neurospin in France and the University of Florence in Italy, Axer and his team have recently imaged the same tissue block from a human hippocampus using several different methods: anatomical and diffusion magnetic resonance imaging (aMRI and dMRI), two-photon fluorescence microscopy (TPFM) and 3D-PLI, respectively.