Toggle light / dark theme

In a new study published in the journal PLOS Biology, a team of researchers at University College London posit that it became the “universal currency of life” by way of a little thing known as phosphorylation.

Basically, phosphorylation is the process by which ATP is created. A phosphate molecule is added to another chemical called ADP, and voíla: ATP is born. That same phosphate, as ScienceAlert explains, is then used for another process called hydrolysis, or the reaction of an organic chemical with water that breaks down ATP for use — and that connection with water may be where the secret to ATP’s metabolic dominance lies.

Well, partly. As the scientists discovered in their research, ATP couldn’t rise to the top alone. It needed both water and another phosphorylating molecule, called AcP, to do it. And in fact, it’s likely that ATP actually knocked out AcP as top energy-giving dog.

Ribonucleic acid (RNA) is a polymeric molecule similar to DNA that is essential in various biological roles in coding, decoding, regulation and expression of genes. Both are nucleic acids, but unlike DNA, RNA is single-stranded. An RNA strand has a backbone made of alternating sugar (ribose) and phosphate groups. Attached to each sugar is one of four bases—adenine (A), uracil (U), cytosine ©, or guanine (G). Different types of RNA exist in the cell: messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA).” RNA is an important information transmitter in our cells and acts as a blueprint for protein production. When freshly formed RNA is processed, introns are removed to produce mature mRNA coding for protein. This cutting is known as “splicing,” and it is controlled by a complex known as the “spliceosome.”

“We found a gene in worms, called PUF60, that is involved in RNA splicing and regulates life span,” says Max Planck scientist Dr. Wenming Huang who made the discovery.

This gene’s mutations resulted in inaccurate splicing and the retention of introns within certain RNAs. As a result, less of the corresponding proteins were produced from this RNA. Surprisingly, worms with the PUF60 gene mutation survived significantly longer than normal worms.

On these timescales, a blink of an eye — one-tenth of a second — seems like eternity.

Researchers from the University of New South Wales have now broken new ground in demonstrating that ‘spin qubits,’ which are the fundamental informational units of quantum computers, can store data for up to two milliseconds. The accomplishment is 100 times longer than prior benchmarks in the same quantum processor for what is known as “coherence time,” the amount of time qubits can be manipulated in increasingly complicated calculations.

The last chimp/human common ancestor died out between five and seven million years ago, giving way to the first pre-humans. But the lineage shared by humans and great apes split several hundred thousand years earlier than we thought, according to new findings. In other words, we split off from our furry friends and began our separate evolution into humans earlier than scientists previously argued.

A woman once baffled doctors when she came back to life after being dead for more than 17 hours. Velma Thomas had a heart attack at her home in Virginia in 2008 and was rushed to hospital. While there she had two more heart attacks and was placed on life support — in all, her heart stopped beating three times and she was clinically dead, with no brain activity, for 17 hours.

Building A More Secure World — Dr. James Revill, Ph.D. — Head of Weapons of Mass Destruction & Space Security Programs, UNIDIR, UN Institute for Disarmament Research United Nations.


Dr. James Revill, Ph.D. (https://unidir.org/staff/james-revill) is the Head of the Weapons of Mass Destruction (WMD) and Space Security Program, at the UN Institute for Disarmament Research (UNIDIR).

Dr. Revill’s research interests focus on the evolution of the chemical and biological weapons and he has published widely in these areas. He was previously a Research Fellow with the Harvard Sussex Program at the Science Policy Research Unit, University of Sussex and completed research fellowships with the Landau Network Volta Center in Italy and the Bradford Disarmament Research Centre in the UK.

Terahertz light, radiation in the far-infrared part of the emission spectrum, is currently not fully exploited in technology, although it shows great potential for many applications in sensing, homeland security screening, and future (sixth generation) mobile networks.

Indeed, this radiation is harmless due to its small photon energy, but it can penetrate many materials (such as skin, packaging, etc.). In the last decade, a number of research groups have focused their attention on identifying techniques and materials to efficiently generate THz electromagnetic waves: among them is the wonder material graphene, which, however, does not provide the desired results. In particular, the generated terahertz output power is limited.

Better performance has now been achieved by topological insulators (TIs)—quantum materials that behave as insulators in the bulk while exhibiting conductive properties on the surface—according to a paper recently published in Light: Science & Applications.

In Switzerland, cancer is the second-leading cause of death. Non-small cell lung cancer (NSCLC) is the cancer form that kills the most people and is still mostly incurable. Unfortunately, only a small percentage of patients survive the metastatic stage for a long time, and even recently approved therapies can only prolong patients’ lives by a few months. As a result, researchers are looking for innovative cancer treatments. Researchers from the University of Bern and the Insel Hospital identified new targets for drug development for this cancer type in a recent study published in the journal Cell Genomics.

They searched for novel targets in the poorly understood class of genes known as “long noncoding RNAs (Ribonucleic acids)” (lncRNAs). LncRNAs are abundant in the “Dark Matter,” or non-protein-coding DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).