Toggle light / dark theme

An in-depth survey of the various technologies for spaceship propulsion, both from those we can expect to see in a few years and those at the edge of theoretical science. We’ll break them down to basics and familiarize ourselves with the concepts.
Note: I made a rather large math error about the Force per Power the EmDrive exerts at 32:10, initial tentative results for thrust are a good deal higher than I calculated compared to a flashlight.

Visit the sub-reddit:
https://www.reddit.com/r/IsaacArthur/

Join the Facebook Group:
https://www.facebook.com/groups/1583992725237264/

Visit our Website:

The UK @Ministry of Defence #Defence Science and #Technology Laboratory (Dstl) has hosted the UK’s first high-powered, long-range #Laser Directed Energy Weapon (LDEW) trial on its ranges at Porton Down.

The trials involve firing the UK #DragonFire demonstrator at a number of targets over a number of ranges, demanding pinpoint accuracy from the beam director.

The trial improves the UK’s understanding of how high-energy lasers and their associated technologies can operate over distance and defeat representative targets. The ability to deliver high levels of laser power with sufficient accuracy are two of the major areas that need to be demonstrated in order to provide confidence in the performance and viability of LDEW systems.

The programme has developed a UK Sovereign ‘Centre of Excellence’ staffed with experts from multiple fields. LDEW have the potential to provide lower cost lethality, reduced logistical burden and increased effectiveness when compared to other weapon systems – the technology could have a huge effect on the future of Defence operations.

Plastic waste is clogging up our rivers and oceans and causing long-lasting environmental damage that is only just starting to come into focus. But a new approach that combines biological and chemical processes could greatly simplify the process of recycling it.

While much of the plastic we use carries symbols indicating it can be recycled, and authorities around the world make a big show about doing so, the reality is that it’s easier said than done. Most recycling processes only work on a single type of plastic, but our waste streams are made up of a complex mixture that can be difficult and expensive to separate.

On top of that, most current chemical recycling processes produce end products of significantly worse quality that can’t be recycled themselves, which means we’re still a long way from the goal of a circular economy when it comes to plastics.

A new type of material can learn and improve its ability to deal with unexpected forces thanks to a unique lattice structure with connections of variable stiffness, as described in a new paper by my colleagues and me.

The new material is a type of architected material, which gets its properties mainly from the geometry and specific traits of its design rather than what it is made out of. Take hook-and-loop fabric closures like Velcro, for example. It doesn’t matter whether it is made from cotton, plastic or any other substance. As long as one side is a fabric with stiff hooks and the other side has fluffy loops, the material will have the sticky properties of Velcro.

My colleagues and I based our new material’s architecture on that of an artificial neural network—layers of interconnected nodes that can learn to do tasks by changing how much importance, or weight, they place on each connection. We hypothesized that a mechanical lattice with physical nodes could be trained to take on certain mechanical properties by adjusting each connection’s rigidity.

Based on marketing activation events the company ran over the summer in Seattle, Austin, and Palo Alto, the outlook for their first product looks pretty rosy. They gave away bags of salad (which were clearly labeled as being gene-edited) consisting of red-and green-leaf mustard greens, and asked people to complete a short survey about it. Adams estimated that more than 6,000 people tried the salads, and over 90 percent responded that they were “very motivated” or “somewhat motivated” to buy the product.

A New Green Revolution?

Helping people make healthier dietary choices is just one benefit that CRISPR could bring to produce. Its possibilities are wide-ranging, as evidenced by PairWise’s work to create fruit trees that can grow in different climates and yield food that’s easier to harvest. It’s not unlike Norman Borlaug’s work back in the 1940s to create a high-yield wheat seed that was resistant to stem rust—a project that ended up saving millions of people from hunger and famine.

Use my link http://www.audible.com/isaac or text “ISAAC” to 500–500 to get a free book including a copy of Olaf Stapledon’s “Star Maker“
Without the Sun our world would be a frozen wasteland, and for this reason any efforts to colonize the galaxy must focus on huddling in the tiny oases of warmth around stars, separated from each other by enormous gulfs of interstellar space. But what if we could make our own stars at the places of our choosing? And can we merely mimic nature or create stars unlike anything which nature has formed?

Visit our Website: http://www.isaacarthur.net.
Support us on Patreon: https://www.patreon.com/IsaacArthur.
SFIA Merchandise available: https://www.signil.com/sfia/

Social Media:
Facebook Group: https://www.facebook.com/groups/1583992725237264/
Reddit: https://www.reddit.com/r/IsaacArthur/
Twitter: https://twitter.com/Isaac_A_Arthur on Twitter and RT our future content.
SFIA Discord Server: https://discord.gg/53GAShE

Listen or Download the audio of this episode from Soundcloud: Episode’s Audio-only version:

Scientists have found new similarities between Human Brains and current Artificial Intelligence models which clearly show that in general, there’s not a lot of things needed except for more and better hardware, and some more improvements in efficiency for Artificial Intelligence to beat Humans in nearly every imaginable field.

TIMESTAMPS:
00:00 More Similar than not… 01:37 How AI and us perceive Time 04:19 What is Artificial General Intelligence 05:57 When can we expect AGI? 07:12 Last Words — #ai #agi #humans …
01:37 How AI and us perceive Time.
04:19 What is Artificial General Intelligence.
05:57 When can we expect AGI?
07:12 Last Words.

#ai #agi #humans

In a new study published in the journal PLOS Biology, a team of researchers at University College London posit that it became the “universal currency of life” by way of a little thing known as phosphorylation.

Basically, phosphorylation is the process by which ATP is created. A phosphate molecule is added to another chemical called ADP, and voíla: ATP is born. That same phosphate, as ScienceAlert explains, is then used for another process called hydrolysis, or the reaction of an organic chemical with water that breaks down ATP for use — and that connection with water may be where the secret to ATP’s metabolic dominance lies.

Well, partly. As the scientists discovered in their research, ATP couldn’t rise to the top alone. It needed both water and another phosphorylating molecule, called AcP, to do it. And in fact, it’s likely that ATP actually knocked out AcP as top energy-giving dog.

Ribonucleic acid (RNA) is a polymeric molecule similar to DNA that is essential in various biological roles in coding, decoding, regulation and expression of genes. Both are nucleic acids, but unlike DNA, RNA is single-stranded. An RNA strand has a backbone made of alternating sugar (ribose) and phosphate groups. Attached to each sugar is one of four bases—adenine (A), uracil (U), cytosine ©, or guanine (G). Different types of RNA exist in the cell: messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA).” RNA is an important information transmitter in our cells and acts as a blueprint for protein production. When freshly formed RNA is processed, introns are removed to produce mature mRNA coding for protein. This cutting is known as “splicing,” and it is controlled by a complex known as the “spliceosome.”

“We found a gene in worms, called PUF60, that is involved in RNA splicing and regulates life span,” says Max Planck scientist Dr. Wenming Huang who made the discovery.

This gene’s mutations resulted in inaccurate splicing and the retention of introns within certain RNAs. As a result, less of the corresponding proteins were produced from this RNA. Surprisingly, worms with the PUF60 gene mutation survived significantly longer than normal worms.