Toggle light / dark theme

Despite major therapeutic advances in the treatment of acute lymphoblastic leukemia (ALL), resistances and long-term toxicities still pose significant challenges. Cyclins and their associated cyclin-dependent kinases are one focus of cancer research when looking for targeted therapies. We discovered cyclin C to be a key factor for B-cell ALL (B-ALL) development and maintenance. While cyclin C is not essential for normal hematopoiesis, CcncΔ/Δ BCR::ABL1 + B-ALL cells fail to elicit leukemia in mice. RNA sequencing experiments revealed a p53 pathway deregulation in CcncΔ/Δ BCR::ABL1 + cells resulting in the inability of the leukemic cells to adequately respond to stress. A genome-wide CRISPR/Cas9 loss-of-function screen supplemented with additional knock-outs unveiled a dependency of human B-lymphoid cell lines on CCNC. High cyclin C levels in B-cell precursor (BCP) ALL patients were associated with poor event-free survival and increased risk of early disease recurrence after remission. Our findings highlight cyclin C as a potential therapeutic target for B-ALL, particularly to enhance cancer cell sensitivity to stress and chemotherapy.

The Philadelphia (Ph) chromosome, a product of the reciprocal translocation t(9;22)(q34;q11) between chromosomes 9 and 22, encodes the BCR::ABL1 fusion oncoprotein.1 The constitutively active BCR::ABL1 tyrosine kinase is a hallmark of chronic myeloid leukemia (CML) and drives a subset of acute lymphoblastic leukemia (ALL). The incidence of Ph positive (Ph+) ALL correlates with age, from only 3% in pediatric ALL to around 25% in older adults.2 Direct targeting of the BCR::ABL1 kinase with tyrosine kinase inhibitors (TKI) has been a breakthrough in targeted cancer therapy. Despite efforts to counteract TKI resistance and improve safety profiles, refractory BCR::ABL1+ leukemia, as well as toxicities and long-term side effects of TKI, present particular therapeutic challenges.3–5

The clinical relevance of cyclins and their associated cyclin-dependent kinases (CDK) has been a major focus of research for several years. Cyclin-CDK complexes do not only drive the cell cycle, but are also important players in various other cellular processes including transcriptional and epigenetic regulation, metabolism or stem cell self-renewal.6 In line with their importance in different pathways, cyclin-CDK complex dysregulation is implicated in many different types of cancer.7

A research team at HZB has developed a clever technique to read quantum spin states in diamonds using electrical signals instead of light. This breakthrough could dramatically simplify quantum sensors and computing hardware.

Diamonds that contain specific optically active defects, known as color centers, can serve as highly sensitive sensors or as qubits for quantum computers, with quantum information stored in their electron spin states. Traditionally, reading these spin states requires optical methods, which are often complex and difficult to implement. Now, researchers at HZB have developed a more streamlined approach: using photovoltage to detect the spin states of individual defects. This method could pave the way for much smaller and more compact quantum sensors.

Harnessing Defects for Spin States.

Researchers in China have achieved a major leap in quantum photonics by generating a massive 60-mode entangled cluster state directly on a chip using optical microresonators.

By leveraging a deterministic, continuous-variable approach and a multiple-laser pump technique, they overcame traditional limitations in scalability. The team confirmed high-quality entanglement using advanced detection methods, paving the way for powerful quantum technologies like chip-based computers, secure communications, and cutting-edge sensors.

Breakthrough in On-Chip Quantum Entanglement.

Neural networks are one typical structure on which artificial intelligence can be based. The term “neural” describes their learning ability, which to some extent mimics the functioning of neurons in our brains. To be able to work, several key ingredients are required: one of them is an activation function which introduces nonlinearity into the structure.

A photonic activation function has important advantages for the implementation of optical based on light propagation. Researchers in the Stiller Research Group at the MPL and LUH in collaboration with MIT have now experimentally shown an all-optically controlled activation function based on traveling sound waves.

It is suitable for a wide range of optical neural network approaches and allows operation in the so-called synthetic frequency dimension. The work is published in the journal Nanophotonics.

Renowned physicist Stephen Hawking passed away earlier this year, but his legacy to science will live on. His final theory on the origin of the universe has now been published, and it offers an interesting departure from earlier ideas about the nature of the “multiverse.”

Ideas about how the universe came to exist the way we see it today have been adapted and built on for decades. The new paper, authored by Hawking and Professor Thomas Hertog, adds to the literature with a new understanding of a theory known as eternal inflation.

After the Big Bang kickstarted the universe, it expanded exponentially for a brief fraction of a fraction of a second. When that inflationary period ended, the universe continued to expand at a much slower rate. But according to the eternal inflation model, quantum fluctuations mean that in some regions of the universe, that rapid inflation never stopped. That results in a gigantic “background” universe full of an infinite number of smaller pocket universes – including the one we live in.

As the world races to move away from fossil fuels, new research has uncovered an extraordinary and nearly untapped energy source hiding in plain sight— ocean currents. According to a landmark study by researchers at Florida Atlantic University (FAU), ocean currents can generate 2.5 times more power than wind farms. Even more stunning is their near-constant energy flow, making them one of the most reliable clean energy sources on Earth.

This isn’t a distant dream or a futuristic concept—it’s science-backed, data-verified, and happening now.

Ocean currents are massive, steady flows of water driven by a mix of wind, the Earth’s rotation, temperature gradients, and salinity differences. Unlike wind or solar energy, which vary with weather and daylight, ocean currents flow predictably and consistently year-round.