Toggle light / dark theme

Sometimes cell phones die sooner than expected or electric vehicles don’t have enough charge to reach their destination. The rechargeable lithium-ion (Li-ion) batteries in these and other devices typically last hours or days between charging. However, with repeated use, batteries degrade and need to be recharged more frequently.

Artificial Intelligence is evolving rapidly, bringing us closer to the Singularity—a future where AI surpasses human intelligence. This shift could transform every aspect of life, from jobs to technology, creating both exciting possibilities and significant risks. As AI continues to advance at an unprecedented pace, understanding its impact on society is more crucial than ever.

🔍 Key Topics Covered:
The rapid evolution of AI and its connection to the looming Singularity, where machines may surpass human intelligence.
How AI could reshape industries, jobs, and even human life as we know it.
The potential risks of uncontrolled AI growth, including the rise of misinformation, biased outcomes, and the threat of AI-designed chemical weapons.
The need for a global governance framework to regulate and monitor AI advancements.
The ethical and philosophical questions surrounding AI’s role in society, including its impact on human consciousness and labor.

🎥 What You’ll Learn:
The rapid advancement of artificial intelligence and its potential to reach the Singularity sooner than expected.
How AI systems like neural networks and symbolic systems impact modern technology and the dangers they pose when left unchecked.
The role AI could play in jobs, governance, and the potential for global cooperation to ensure safe AI development.
Insight into real-world concerns such as disinformation, biased AI systems, and even the possibility of AI leading to catastrophic societal changes.

📊 Why This Matters:
These developments highlight the critical need for responsible AI governance as the technology progresses toward potentially surpassing human intelligence. Understanding the rapid growth of AI and its implications helps us prepare for the future, where machines could fundamentally change society. Whether you’re interested in technology, philosophy, or the future of work, this content offers an in-depth look at the powerful impact AI will have on the world.

*DISCLAIMER*:
The content presented is for informational and entertainment purposes, offering insights into the future of AI based on current trends and technological research. The creators are not AI experts or legal professionals, and the information should not be taken as professional advice. Viewer discretion is advised due to the speculative nature of the topics discussed. The views expressed are those of the content creator and do not necessarily represent any affiliated individuals or organizations.

#ai.

They will build neuromorphic chips that using nanotechnology will combine neuronet and symbolic AI.


Provided to youtube by beggars group digital ltd.

Down in the Park (1998 Remaster) · Gary Numan · Tubeway Army.

Replicas.

℗ 1979 Beggars Banquet Records Ltd.

Main episode with Richard Dolan: https://youtu.be/OE_1oPMA52Y

As a listener of TOE you can get a special 20% off discount to The Economist and all it has to offer! Visit https://www.economist.com/toe.

Join My New Substack (Personal Writings): https://curtjaimungal.substack.com.

Listen on Spotify: https://tinyurl.com/SpotifyTOE

Become a YouTube Member (Early Access Videos):
https://www.youtube.com/channel/UCdWIQh9DGG6uhJk8eyIFl1w/join.

Support TOE on Patreon: https://patreon.com/curtjaimungal.

Many protoplanetary disks in which new planets are formed are much smaller than thought. Using the Atacama Large Millimeter/submillimeter Array (ALMA) scientists of the Leiden Observatory (the Netherlands) looked at 73 protoplanetary disks in the Lupus region. They found that many young stars host modest disks of gas and dust, some as small as 1.2 astronomical units. The research, accepted for publication in Astronomy & Astrophysics, establishes an important link between observed protoplanetary disks and exoplanets.

In the past decade, astronomers have imaged hundreds of around young stars using powerful radio telescopes on Earth, like ALMA. When compared to the size of our own solar system, many of these disks extend far beyond the orbit of Neptune, our outermost planet. Furthermore, most of the disks show gaps where are thought to be formed. Research of Ph.D. candidate Osmar M. Guerra-Alvarado, postdoc Mariana B. Sanchez and assistant professor Nienke van der Marel of the Leiden Observatory now show that these disks might not be typical.

Using ALMA, the researchers imaged all known protoplanetary disks around in Lupus, a star-forming region located about 400 light years from Earth in the southern constellation Lupus. The survey reveals that two-thirds of the 73 disks are small, with an average radius of six astronomical units. This is about the orbit of Jupiter. The smallest disk found was only 0.6 astronomical units in radius, smaller than the orbit of Earth.

Researchers have shed new light on how tissues in the body are repaired following the damage and premature death of tissue cells.

Their study in fruit flies, which first appeared in eLife as a Reviewed Preprint and is now published as the final version, describes what the editors call fundamental discoveries with solid evidence for how dying (or necrotic) cells contribute to through a previously uncharacterized mechanism. It suggests that these cells play a role in signaling for the body to produce other types of cells that are involved in controlling natural and inflammation, with findings that may have implications for wound repair and tissue regeneration.

As our bodies grow and develop, cells naturally die off where they are no longer needed, in a process called apoptosis. On the other hand, cells can be damaged and die prematurely due to injury, infectious diseases or other factors, in a process known as necrosis.