Menu

Blog

Page 4385

May 12, 2022

MDMA for PTSD just crushed its phase 3 trial

Posted by in categories: biotech/medical, neuroscience

Results from the first phase 3 trial of using MDMA for PTSD along with talk therapy found the drug to be effective.

May 12, 2022

Scientists successfully grow plants in Moon soil

Posted by in categories: biological, space

For the first time ever, scientists have successfully grown plants in soil from the Moon.

Researchers from the University of Florida planted seeds from the Arabidopsis plant — commonly known as thale cress — into a few teaspoons worth of lunar soil collected in the late 60s and early 70s during the Apollo 11, 12 and 17 missions.

After about a week of watering and feeding, the seeds grew into and out of the soil, or lunar regolith, according to a paper detailing the experiment published Thursday in the scientific journal “Communications Biology.”

May 12, 2022

Ultrathin fuel cell uses the body’s own sugar to generate electricity

Posted by in categories: biotech/medical, computing

Glucose is the sugar we absorb from the foods we eat. It is the fuel that powers every cell in our bodies. Could glucose also power tomorrow’s medical implants?

Engineers at MIT and the Technical University of Munich think so. They have designed a new kind of glucose fuel cell that converts glucose directly into electricity. The device is smaller than other proposed glucose fuel cells, measuring just 400 nanometers thick. The sugary power source generates about 43 microwatts per square centimeter of electricity, achieving the highest power density of any glucose fuel cell to date under ambient conditions.

Silicon chip with 30 individual glucose micro fuel cells, seen as small silver squares inside each gray rectangle. (Image: Kent Dayton)

May 12, 2022

Sophisticated fluid mechanics model: Space–time isogeometric analysis of car and tire aerodynamics

Posted by in categories: computing, engineering, space

The complex aerodynamics around a moving car and its tires are hard to see, but not for some mechanical engineers.

Specialists in at Rice University and Waseda University in Tokyo have developed their computer methods to the point where it’s possible to accurately model moving cars, right down to the flow around rolling .

Continue reading “Sophisticated fluid mechanics model: Space–time isogeometric analysis of car and tire aerodynamics” »

May 12, 2022

Quantum computers vs supercomputers: How do they differ?

Posted by in categories: augmented reality, quantum physics, robotics/AI, supercomputing

Over the years, supercomputers have played a pivotal role in pushing the frontiers of science. Earlier this year, Meta launched one of the fastest AI supercomputers, the AI Research SuperCluster (RSC), to build sophisticated AI models that can learn from trillions of examples; navigate hundreds of different languages; seamlessly analyse text, images, and video together; build AR tools etc.

However, the quest for something even faster than supercomputers led to the development of quantum computers. Last year, the University of Science and Technology of China (USTC) introduced the world’s fastest programmable superconducting quantum computer; Zuchongzhi 2.1 is a million times faster than a conventional computer.

At last year’s I/O conference, Google unveiled a Quantum AI campus in Santa Barbara, California, complete with a quantum data centre, quantum hardware research labs, and quantum processor chip fab facilities. The tech giant plans to build a useful, error-corrected quantum computer within a decade.

May 12, 2022

Good vibrations for quantum computing

Posted by in categories: computing, quantum physics

Quantum computing operations are realized using acoustic devices, paving the way for a new type of quantum processor.

May 12, 2022

Alexa’s speech recognition research at ICASSP 2022

Posted by in category: robotics/AI

At this year’s IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), the Alexa AI automatic speech recognition organization is rep… See more.


Multimodal training, signal-to-interpretation, and BERT rescoring are just a few topics covered by Amazon’s 21 speech-related papers.

May 12, 2022

Largest-Ever Collection of Brain Maps Charts How the Brain Changes Over a Lifetime

Posted by in categories: biotech/medical, neuroscience

BrainChart is a standardized open-source database of MRI brain scans across 100 years of the human lifespan.

May 12, 2022

Could an Atlas of the Brain’s Genome Solve Neuropsychiatric Disorders?

Posted by in categories: biotech/medical, genetics, neuroscience

Dr. Thomas Lehner was tired of his research repeatedly hitting a wall.

A scientist at the National Institute of Mental Health, Lehner studies the genetic underpinnings of neuropsychiatric disorders. Teasing out associated genes turned out to be relatively simple. Schizophrenia, for example, is linked to small variations in some 360 genes.

The problem is identifying the ones that really matter—culprit gene variants that can be turned into predictive tests, similar to the BRCA gene for breast cancer.

May 12, 2022

A new guide to extremely powerful light pulses

Posted by in category: energy

The first demonstration of the laser in 1960 was rapidly followed by the birth of a new research field: nonlinear optics. The unique coherence properties of stimulated emission, the fundamental physical process of laser radiation, has enabled intensities that exceed those of incoherent sources by many orders of magnitude. The high intensities drive electrons so strongly that they oscillate with frequencies different from those of the driving light field. The subsequent dipole emission can be extremely colorful. Optical fiber or laser filaments have been used as waveguides for decades to maximize this effect and to generate extremely broadband light pulses.

However, if the laser pulses carry too much energy, fiber suffers from damage and light filaments break-up, such that the unique spatial properties of laser radiation are lost. Researchers from the German Electron-Synchrotron DESY in Hamburg, Germany, and the Helmholtz-Institute Jena, Germany have now reported a new method for guiding light in an energy-scalable manner. Guiding is accomplished by the use of two refocusing mirrors and the careful spacing of thin nonlinear glass windows.

The scientists have reported in a recent publication in Ultrafast Science that gain more than 30 times of their initial bandwidth in such a setup and can be consequently compressed by the same factor. This shortens their duration and considerably increases their peak power. Remarkably, these experiments were performed with that exceed the peak power limit in glass fibers by a factor of 40. However, despite propagation through about 40 cm of glass in total, beam quality and pulse energy remained high. “We have elegantly combined two recent approaches to extend the bandwidth of ultrashort pulses. Nevertheless, the optical setup is really simple. All optics we used in our spectral broadening scheme were stock items. This and the excellent noise properties make our approach widely applicable,” says Dr. Marcus Seidel, lead author of the publication.