Toggle light / dark theme

Support us! https://www.patreon.com/mlst.

If you don’t like the background music, we published a version with it all removed here — https://anchor.fm/machinelearningstreettalk/episodes/Music-R…on-e1sf1l7

David Chalmers is a professor of philosophy and neural science at New York University, and an honorary professor of philosophy at the Australian National University. He is the co-director of the Center for Mind, Brain, and Consciousness, as well as the PhilPapers Foundation. His research focuses on the philosophy of mind, especially consciousness, and its connection to fields such as cognitive science, physics, and technology. He also investigates areas such as the philosophy of language, metaphysics, and epistemology. With his impressive breadth of knowledge and experience, David Chalmers is a leader in the philosophical community.

The central challenge for consciousness studies is to explain how something immaterial, subjective, and personal can arise out of something material, objective, and impersonal. This is illustrated by the example of a bat, whose sensory experience is much different from ours, making it difficult to imagine what it’s like to be one. Thomas Nagel’s “inconceivability argument” has its advantages and disadvantages, but ultimately it is impossible to solve the mind-body problem due to the subjective nature of experience. This is further explored by examining the concept of philosophical zombies, which are physically and behaviorally indistinguishable from conscious humans yet lack conscious experience. This has implications for the Hard Problem of Consciousness, which is the attempt to explain how mental states are linked to neurophysiological activity. The Chinese Room Argument is used as a thought experiment to explain why physicality may be insufficient to be the source of the subjective, coherent experience we call consciousness. Despite much debate, the Hard Problem of Consciousness remains unsolved. Chalmers has been working on a functional approach to decide whether large language models are, or could be conscious.

Extract from “Cell Intelligence in Physiological & Morphological Spaces”, kindly contributed by Michael Levin in SEMF’s 2022 Spacious Spatiality.

Full talk: https://www.youtube.com/watch?v=jLiHLDrOTW8

MICHAEL LEVIN
Department of Biology, Tufts University: https://as.tufts.edu/biology.
Tufts University profile: https://ase.tufts.edu/biology/labs/levin/
Wyss Institute profile: https://wyss.harvard.edu/team/associate-faculty/michael-levin-ph-d/
Wikipedia: https://en.wikipedia.org/wiki/Michael_Levin_(biologist)
Google Scholar: https://scholar.google.com/citations?user=luouyakAAAAJ
Twitter: https://twitter.com/drmichaellevin.
LinkedIn: https://www.linkedin.com/in/michael-levin-b0983a6/

SEMF NETWORKS

😗


Billionaire Elon Musk has frequently spoken about his concerns about underpopulation. He has mentioned that people should focus on having more babies to resolve the problem of low birth rates and population collapse.

Earlier this year, Musk shared how the COVID-19 pandemic has resulted in a lower birth rate instead of the “baby boom” expected due to people being forced to stay indoors.

Now, a birthing facility could answer Musk’s concerns about the world’s low birth rates. The world’s first artificial womb facility, EctoLife, promises to produce customized babies.

A large portion of people on the planet is infected with the parasite Toxoplasma. Now, a study headed by scientists at Stockholm University demonstrates how this tiny parasite spreads so successfully throughout the body, for example to the brain. The parasite infects immune cells and hijacks their identity. The research was recently published in the journal Cell Host & Microbe.

The various roles of immune cells in the body are very strictly regulated in order to combat infections. How Toxoplasma infects so many people and animal species and spreads so quickly has long been a mystery to scientists.

“We have now discovered a protein that the parasite uses to reprogram the immune system”, says Arne ten Hoeve, a researcher at the Department of Molecular Biosciences, Wenner-Gren Institute at Stockholm University.

Bubbles are ubiquitous, existing in everything from the foam on a beer to party toys for children. Despite this pervasiveness, there are open questions on the behavior of bubbles, such as why some bubbles are more resistant to bursting than others. Now Francois Boulogne and colleagues from the University of Paris-Saclay have taken a step toward answering that question by measuring the temperature of the film surrounding a soap bubble, finding that it can be significantly lower than that of its local environment [1]. The team says that the result could help industrial manufacturers of bubbles better control the stability of their products.

On a sunny day, our bodies cool down by releasing energy into the environment through the evaporation of sweat. Soap films also release energy by losing liquid via evaporation. Researchers studying bubbles have tracked the evaporation of a soap film’s liquid content under different conditions. But those experiments all assumed that the film’s temperature matched that of the environment, an assumption the results of Boulogne and his colleagues challenge.

In their experiments Boulogne and colleagues created a soap bubble from a mixture made of dishwashing liquid, water, and glycerol. They then measured the soap film’s temperature under a variety of environmental conditions. They found that the film could be up to 8 °C colder than the surrounding air. They also found that glycerol content of the soap film impacted this temperature difference, with films containing more glycerol having higher temperatures. Boulogne says that such a large temperature difference could impact bubble stability. But, he adds, further experiments are needed to corroborate that idea.