Toggle light / dark theme

Physicists from the University of the Witwatersrand (Wits) have developed an innovative computing system using laser beams and everyday display technology, marking a significant leap forward in the quest for more powerful quantum computing solutions.

The breakthrough, achieved by researchers at the university’s Structured Light Lab, offers a simpler and more cost-effective approach to advanced quantum computing by harnessing the unique properties of light. This development could potentially speed up complex calculations in fields such as logistics, finance and artificial intelligence. The research was published in the journal APL Photonics as the editor’s pick.

“Traditional computers work like switchboards, processing information as simple yes or no decisions. Our approach uses to process multiple possibilities simultaneously, dramatically increasing computing power,” says Dr. Isaac Nape, the Optica Emerging Leader Chair in Optics at Wits.

As a simple illustration, let’s say someone wanted to create a tomato sauce recipe, optimizing vitamin C and using sustainable tomatoes within a certain cost range. Journey Foods then taps into its database to generate an optimal recipe, and will continually push recommendations of top suppliers.

“Essentially, when people go to ChatGPT or something, and they’re asking them, ‘write this paper for me, or give me a social media post, speak to this audience,’ or whatever, right? It’s the same thing with our generative recipe recommendations,” Lynn said.

Except Lynn doesn’t use ChatGPT. Systems such as ChaptGPT gather data from the open internet, but Journey Foods gets its data from research institutions, academic journals, suppliers and manufacturers. Lynn said her business uses a lot of private, hard data that’s unstructured, with her company then giving it structure and doing so globally.

Bio-Rad invites you to our 2nd India Cell Gene Therapy Symposium 2024 After many decades of effort, the future of cell and gene therapies (CGT) is incredibly promising. A flurry of recent successes has led to the approval of several life changing treatments for patients and many more therapies are in development. CGT seek to correct the root cause of an illness at the molecular level. These game changing medicines are reshaping how we address previously uncurable illnesses — transforming people’s lives.

Mayo Clinic researchers have developed new artificial intelligence (AI)-based tools to pinpoint specific regions of the brain with seizure hotspots more quickly and accurately in patients with drug-resistant epilepsy. Their study, published in Nature Communications Medicine, highlights the potential of AI to revolutionize epilepsy treatment by interpreting brain waves during electrode implantation surgery. This transformative approach could significantly reduce the time patients spend in the hospital, accelerating the identification and removal of seizure-generating brain regions.

“This innovative approach could enable more rapid and accurate identification of seizure-generating areas during stereo-electroencephalography (EEG) implantation surgery, potentially reducing the cost and risks of prolonged monitoring,” says Nuri Ince, Ph.D., senior author of the study and a consultant in the Mayo Clinic Department of Neurologic Surgery.

Drug-resistant epilepsy often requires surgical removal of the seizure-causing brain tissue. A first step in that treatment is typically a surgery that involves implanting electrodes in the brain and monitoring neural activity for several days or weeks to identify the location of the seizures.