Toggle light / dark theme

Text-to-image AI exploded this year as technical advances greatly enhanced the fidelity of art that AI systems could create. Controversial as systems like Stable Diffusion and OpenAI’s DALL-E 2 are, platforms including DeviantArt and Canva have adopted them to power creative tools, personalize branding and even ideate new products.

But the tech at the heart of these systems is capable of far more than generating art. Called diffusion, it’s being used by some intrepid research groups to produce music, synthesize DNA sequences and even discover new drugs.

So what is diffusion, exactly, and why is it such a massive leap over the previous state of the art? As the year winds down, it’s worth taking a look at diffusion’s origins and how it advanced over time to become the influential force that it is today. Diffusion’s story isn’t over — refinements on the techniques arrive with each passing month — but the last year or two especially brought remarkable progress.

Could the AI bot one day replace the search engine?

Three weeks ago, an artificial intelligence research laboratory, Open AI, unveiled its experimental chatbot ChatGPT. Though far away from perfection, a look at its capabilities has been sufficient to send a red alert to Google about how AI can upend its business. Sundar Pichai, the CEO at Alphabet, Google’s parent company, has now directed multiple groups to focus on addressing this threat, Business Insider.


1, 2

The major reason Google does this is that it presents it with an opportunity to also display ad links, which results in revenue for the company. According to an Insider report, Google’s ad business generated revenue of US$208 billion in 2021 alone and accounted for 81 percent of Google’s earnings.

Hamoudi, H., Berdiyorov, G.R., Zekri, A. et al. Building block 3D printing based on molecular self-assembly monolayer with self-healing properties. Sci Rep 12, 6,806 (2022). https://doi.org/10.1038/s41598-022-10875-9

Download citation.

The newly-created Longevity Escape Velocity Foundation (LEV) has released details of the first study in its flagship research programme: Robust Mouse Rejuvenation – Study 1.

Longevity. Technology: A highlight of Longevity Summit Dublin 2022 was Dr Aubrey de Grey’s announcement of his new foundation; LEV Foundation exists to proactively identify and address the most challenging obstacles on the path to the widespread availability of genuinely effective treatments to prevent and reverse human age-related disease, and to that end, its flagship research programme is a sequence of large mouse lifespan studies.

Mouse models are significant in aging research for several reasons. Mice and humans share many genetic and physiological similarities, including similar aging-related pathways, and this makes mice a useful model for studying the molecular and cellular processes underlying aging in humans.

😗


A research group led by Prof. Wu Kaifeng from the Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences recently reported the successful initialization, coherent quantum-state control, and readout of spins at room temperature using solution-grown quantum dots, which represents an important advance in quantum information science.

The study was published in Nature Nanotechnology on Dec 19th.

Quantum information science is concerned with the manipulation of the quantum version of information bits (called qubits). When people talk about materials for quantum information processing, they usually think of those manufactured using the most cutting-edge technologies and operating at very cold temperatures (below a few Kelvin), not the “warm and messy” materials synthesized in solution by chemists.

We see the world around us because light is being absorbed by specialized cells in our retina. But can vision happen without any absorption at all—without even a single particle of light? Surprisingly, the answer is yes.

Imagine that you have a camera cartridge that might contain a roll of photographic film. The roll is so sensitive that coming into contact with even a single photon would destroy it. With our everyday classical means there is no way there’s no way to know whether there’s film in the cartridge, but in the it can be done. Anton Zeilinger, one of the winners of the 2022 Nobel Prize in Physics, was the first to experimentally implement the idea of an interaction-free experiment using optics.

Now, in a study exploring the connection between the quantum and classical worlds, Shruti Dogra, John J. McCord, and Gheorghe Sorin Paraoanu of Aalto University have discovered a new and much more effective way to carry out interaction-free experiments. The team used transmon devices—superconducting circuits that are relatively large but still show quantum behavior—to detect the presence of microwave pulses generated by classical instruments. Their research was recently published in Nature Communications.