Toggle light / dark theme

In the brains of people without schizophrenia, concepts are organized into specific semantic domains and are globally connected, enabling coherent thought and speech.

In contrast, the researchers reported that the semantic networks of people with schizophrenia were disorganized and randomized. These impairments in semantics and associations contribute to delusion and incoherent speech.

Lithium-ion batteries power our lives.

Because they are lightweight, have and are rechargeable, the batteries power many products, from laptops and cell phones to electric cars and toothbrushes.

However, current have reached the limit of how much energy they can store. That has researchers looking for more powerful and cheaper alternatives.

Researchers in Carnegie Mellon University’s Robotics Institute (RI) have designed a system that makes an off-the-shelf quadruped robot nimble enough to walk a narrow balance beam—a feat that is likely the first of its kind.

“This experiment was huge,” said Zachary Manchester, an assistant professor in the RI and head of the Robotic Exploration Lab. “I don’t think anyone has ever successfully done balance beam walking with a before.”

To the team’s knowledge, this is the first instance of a successfully walking on a narrow balance beam. Their paper, “Enhanced Balance for Legged Robots Using Reaction Wheels,” was accepted to the 2023 International Conference on Robotics and Automation. The annual conference will be held May 29–June 2, in London.

An instrument on the International Space Station has revealed new information about how the Sun’s magnetic field affects cosmic rays on their way to Earth.

Galactic cosmic rays (GCRs) are highly energetic charged particles that are produced through various acceleration mechanisms in astrophysical objects such as supernova remnants. These particles propagate through the Galaxy and can reach the heliosphere, a region dominated by plasma originating from the Sun. Within the heliosphere, GCRs interact with the turbulent plasma environment in a way that decreases their flux, causing them to diffuse in space and to lose energy [1]. Most of the impact of this “solar modulation” on GCRs is independent of particle charge. But GCR drift is also influenced by large-scale gradients in, and curvatures of, the heliospheric magnetic field and by the current sheet—a tenuous structure that separates the heliosphere into regions of opposite magnetic-field polarity [2].

To build a workforce that can meet the expected future demand in the quantum sector, we need to train many more quantum-literate educators and marshal support for them.

In 2018 the US federal government passed the National Quantum Initiative Act, a program designed to accelerate the country’s quantum research and development activities. In the next decade, quantum information science and quantum technologies are expected to have a significant impact on the US economy, as well as on that of other countries. To fulfill that promise, the US will need a “quantum-capable” workforce that is conversant with the core aspects of quantum technologies and is large enough to meet the expected demand. But even now, as quantum-career opportunities are just starting to appear, supply falls behind demand; according to a 2022 report, there is currently only around one qualified candidate for every three quantum job openings [1]. We call for education institutions and funding agencies to invest significantly in workforce development efforts to prevent the worsening of this dearth.

Most of today’s jobs in quantum information science and technology (QIST) require detailed knowledge and skills that students typically gain in graduate-level programs [2]. As the quantum industry matures from having a research and development focus toward having a deployment focus, this requirement will likely relax. The change is expected to increase the proportion of QIST jobs compatible with undergraduate-level training. However, 86% of QIST-focused courses currently take place at PhD-granting research institutions [3]. Very few other undergraduate institutions offer opportunities to learn about the subject. To meet the future need, we believe that aspect needs to change with QIST education being incorporated into the curricula at predominantly undergraduate institutions and community colleges in the US. However, adding QIST classes to the curricula at these institutions will be no easy task.

Physicists and material scientists have been trying to metallize hydrogen for many decades, but they have not yet succeeded. In 1968, British physicist Neil Ashcroft predicted that atomic metallic hydrogen would be a high-temperature semiconductor.

Most recent studies also suggested that this elusive and hypothetical form of hydrogen would also conduct electricity with no resistance when its temperature exceeds that of boiling water. This prediction ultimately paved the way for the discovery of high-temperature superconductivity in hydrides (i.e., compounds containing hydrogen and a metal).

Researchers at Sapienza University of Rome, Sorbonne University, CNRS, and the International School for Advanced Studies (SISSA) have recently carried out a study aimed at thoroughly characterizing the behavior and properties of hydrogen at high pressures. Their paper, published in Nature Physics, outlines a highly accurate phase diagram of high-pressure hydrogen, which could inform ongoing efforts aimed at creating atomic metallic hydrogen.