Toggle light / dark theme

Called a Wolf-Rayet, these stars expel most of their outer layers into their surroundings before exploding as supernovae.

NASA’s James Webb Space Telescope has released a phenomenal image of a supernova waiting to happen. Called a Wolf-Rayet, these stars are among the most massive, luminous, and “briefly detectable” stars known. They’re at an advanced stage of stellar evolution and expel most of their outer layers into their surroundings before exploding as supernovae.

Webb had a rare sighting of a Wolf-Rayet star in June 2022. In the latest image, the telescope shows the star, WR 124, in unprecedented detail, thanks to its infrared instruments.


NASA, ESA, CSA, stsci, webb ERO production team.

Not all stars go through a brief Wolf-Rayet phase before evolving into a supernova, which is why astronomers think Webb has captured a rare phase. This particular star is 30 times the mass of the Sun and has shed 10 Suns’ worth of material – so far. According to a release, as the ejected gas moves away from the star and cools, cosmic dust forms and glows in the infrared light detectable by Webb.

Inspired by nature, these soft robots received their amphibious upgrade with the help of bistable actuators.

Researchers at Carnegie Mellon University have created a soft robot that can effortlessly transition from walking to swimming or from crawling to rolling.

“We were inspired by nature to develop a robot that can perform different tasks and adapt to its environment without adding actuators or complexity,” said Dinesh K. Patel, a postdoctoral fellow in the Morphing Matter Lab in the School of Computer Science’s Human-Computer Interaction Institute. “Our bistable actuator is simple, stable and durable, and lays the foundation for future work on dynamic, reconfigurable soft robotics.”

Long-term microgravity exposure causes various biological changes, ranging from bone loss to changes in cardiovascular function.

Towards this, SpaceX’s Dragon cargo ship is set to deliver cardiac tissue chips to the International Space Station (ISS). According to NASA, the cargo spacecraft is expected to autonomously dock with the ISS at 7:52 am EDT Thursday, March 16.

Contrary to common assumption, not all meteorites from the outer solar system contain a lot of water.

Scientists are one step closer to figuring out where Earth’s vast quantities of water come from after disqualifying a class of meteorites drifting around in space since the solar system’s birth 4 1/2 billion years ago, according to a new study published in Nature.

Where did Earth’s water come from?


Kirstypargeter/iStock.

The study may have significant implications for the quest for liquid water and possibly even life on distant planets. It might also aid in understanding the extraordinary circumstances that allowed Earth to become a planet that supports life.

Scientists have long known that mitochondria play a crucial role in the metabolism and energy production of cancer cells. However, until now, little was known about the relationship between the structural organization of mitochondrial networks and their functional bioenergetic activity at the level of whole tumors.

In a new study, published in Nature, researchers from the UCLA Jonsson Comprehensive Cancer Center used (PET) in combination with to generate 3-dimensional ultra-resolution maps of mitochondrial networks in of genetically engineered mice.

They categorized the tumors based on mitochondrial activity and other factors using an artificial intelligence technique called , quantifying the mitochondrial architecture across hundreds of cells and thousands of mitochondria throughout the tumor.

PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE

Sign Up on Patreon to get access to the Space Time Discord!
https://www.patreon.com/pbsspacetime.

Physics is the business of figuring out the structure of the world. So are our brains. But sometimes physics comes to conclusions that are in direct conflict with concepts fundamental to our minds, such as the realness of space and time. How do we tell who’s correct? Are time and space objective realities or human-invented concepts?

Check out the Space Time Merch Store.
https://www.pbsspacetime.com/shop.

Sign up for the mailing list to get episode notifications and hear special announcements!
https://mailchi.mp/1a6eb8f2717d/spacetime.

Search the Entire Space Time Library Here: https://search.pbsspacetime.com/

😗


After successful recommissioning in autumn 2022, the Greifswald nuclear fusion experiment has surpassed an important target. In 2023, an energy turnover of 1 gigajoule was targeted. Now the researchers have even achieved 1.3 gigajoules and a new record for discharge time on Wendelstein 7-X: the hot plasma could be maintained for eight minutes.

During the three-year completion work that ended last summer, Wendelstein 7-X was primarily equipped with water cooling for the wall elements and an upgraded heating system. The latter can now couple twice as much power into the as before. Since then, the experiment can be operated in new parameter ranges.

“We are now exploring our way towards ever higher energy values,” explained Prof. Dr. Thomas Klinger, head of the Stellarator Transport and Dynamics Division at the Max Planck Institute for Plasma Physics (IPP) in Greifswald. “In doing so, we have to proceed step by step so as not to overload and damage the facility.”