Toggle light / dark theme

The effects of vitamin C on clinical outcomes in critically ill patients remain controversial due to inconclusive studies. This retrospective observational cohort study evaluated the effects of vitamin C therapy on acute kidney injury (AKI) and mortality among septic patients.

Electronic medical records of 1,390 patients from an academic hospital who were categorized as Treatment (received at least one dose of 1.5 g IV vitamin C, n = 212) or Comparison (received no, or less than 1.5 g IV vitamin C, n = 1178) were reviewed. Propensity score matching was conducted to balance a number of covariates between groups. Multivariate logistic regressions were conducted predicting AKI and in-hospital mortality among the full sample and a sub-sample of patients seen in the ICU.

Data revealed that vitamin C therapy was associated with increases in AKI (OR = 2.07 95% CI [1.46–2.93]) and in-hospital mortality (OR = 1.67 95% CI [1.003–2.78]) after adjusting for demographic and clinical covariates. When stratified to examine ICU patients, vitamin C therapy remained a significant risk factor of AKI (OR = 1.61 95% CI [1.09–2.39]) and provided no protective benefit against mortality (OR = 0.79 95% CI [0.48–1.31]).

Watch the extended cut of the Singularity, starring Adam Driver in a journey for truth and a website that makes websites.

Visit thesingularity.squarespace.com to Enter the Singularity.


Connect with us:
➤ TikTok: https://www.tiktok.com/@squarespace.
➤ Instagram: https://www.instagram.com/squarespace.
➤ Pinterest: https://www.pinterest.com/squarespace.
➤ Facebook: https://www.facebook.com/squarespace.
➤ Twitter: https://twitter.com/squarespace.
➤ LinkedIn: https://www.linkedin.com/company/squarespace.

👋 About Squarespace.

Reconfigurable antennas—those that can tune properties like frequency or radiation beams in real time, from afar—are integral to future communication network systems, like 6G. But many current reconfigurable antenna designs can fall short: they dysfunction in high or low temperatures, have power limitations or require regular servicing.

To address these limitations, in the Penn State College of Engineering combined electromagnets with a compliant mechanism, which is the same mechanical engineering concept behind binder clips or a bow and arrow. They published their proof-of-concept reconfigurable compliant mechanism-enabled patch antenna today (Feb. 13) in Nature Communications.

“Compliant mechanisms are engineering designs that incorporate elements of the materials themselves to create motion when force is applied, instead of traditional rigid body mechanisms that require hinges for motion,” said corresponding author Galestan Mackertich-Sengerdy, who is both a doctoral student and a full-time researcher in the college’s School of Electrical Engineering and Computer Science (EECS). “Compliant mechanism-enabled objects are engineered to bend repeatedly in a certain direction and to withstand .”

Amount of toxin present in wheat, which is carcinogenic when heated, can be reduced and grown, new field study confirms Toast could soon be healthier after scientists grew a field of wheat genetically-edited to remove a cancer-causing chemical. Bread, when baked, produces a dangerous toxin called acrylamide, which is believed to be carcinogenic and when toasted is even more lethal.

Enhancers change rapidly during evolution, but the mechanisms by which new enhancers originate in the genome are mostly unknown. Not all regions of the genome evolve at the same rate and mutations are elevated at late DNA replication time. To understand the role played by mutational processes in enhancer evolution, we leveraged changes in mutation rates across the genome. By examining enhancer turnover in matched healthy and tumor samples in human individuals, we find while enhancers are most common in early replicating regions, new enhancers emerged more often at late replicating regions. Somatic mutations in cancer are consistently elevated in enhancers that have experienced turnover compared to those that are maintained. A similar relationship with DNA replication time is observed in enhancers across mammalian species and in multiple tissue-types. New enhancers appeared almost twice as often in late compared to early replicating regions, independent of transposable elements. We trained a deep learning model to show that new enhancers are enriched for mutations that modify transcription factor (TF) binding. New enhancers are also typically neutrally evolving, enriched in eQTLs, and are more tissue-specific than evolutionarily conserved enhancers. Accordingly, transcription factors that bind to these enhancers, inferred by their binding sequences, are also more recently evolved and more tissue-specific in gene expression. These results demonstrate a relationship between mutation rate, DNA replication time and enhancer evolution across multiple time scales, suggesting these observations are time-invariant principles of genome evolution.

The authors have declared no competing interest.