Menu

Blog

Page 4074

Dec 18, 2022

World-first: Drug molecules in the human body can now be manipulated

Posted by in categories: biotech/medical, innovation

The innovation was inspired by the measles virus.

In a world-first, researchers at Tel Aviv University have conceived of a way to control the encapsulation and release of drug molecules by exposure to UV light, according to a press release by the institution published on Monday.

The scientists now hope that this new efficient encapsulation will allow for the high loading capacity of molecules leading to further development of delivery systems for the controlled release of biomolecules and drugs in the body by external stimuli using light.

Dec 18, 2022

Cyberthreats lurk at Messi vs. Mbappé FIFA World Cup final match as 5 billion prepare to watch

Posted by in categories: cybercrime/malcode, transportation

More than 15,000 cameras have been placed throughout the eight stadiums and along roads and transportation infrastructure in Doha.

As Lionel Messi faces Kylian Mbappé in Argentina vs France World Cup final match in Qatar, which billions prepare to watch, cybersecurity experts warn that the event may be a hotspot for cyber threats.

“With major sporting events becoming increasingly digitized, the attack surface for threat actors has also increased,” a recent ZeroFox report on World Cup threats stated.

Continue reading “Cyberthreats lurk at Messi vs. Mbappé FIFA World Cup final match as 5 billion prepare to watch” »

Dec 18, 2022

Are brain implants the future of computing?

Posted by in categories: computing, cyborgs, neuroscience, wearables

Imagine brain implants that let you control devices by thought alone—or let computers read your mind. It’s early days, but research into this technology is well under way.

Film supported by @mishcondereya.

Continue reading “Are brain implants the future of computing?” »

Dec 18, 2022

AI art: Death of creative industry, or its savior?

Posted by in categories: robotics/AI, security

Check out all the on-demand sessions from the Intelligent Security Summit here.

With the arrival of AI-generated art and the proliferation of tools like Midjourney, Stable Diffusion and DALL-E, questions have been rife in circles across the creative industry.

Is this a temporary trend? Or a would-be essential tool in creative communication?

Dec 18, 2022

Communication Breakdown in the Brain

Posted by in category: neuroscience

Seizures come suddenly, triggered by stress, fever, flashing lights, or even just feeling tired. Some cause the body to jerk and shake while others can produce strange sensations, make one lose a sense of awareness, or faint. They can happen when the person is awake or asleep. When they pass, after a few seconds or minutes, they leave people tired, confused, and disoriented.

The brain usually maintains a certain level of inhibition that keeps neurons from firing uncontrollably. But during a seizure, one part of the brain starts firing too frantically and can’t stop, resulting in a spike of electrical activity and a seizure.

Dec 18, 2022

A New Way to Achieve Nuclear Fusion: Helion

Posted by in category: engineering

Get the CuriosityStream x Nebula bundle deal for just 11.59 https://curiositystream.com/realengineering.

Watch this video ad free on Nebula: https://nebula.tv/videos/realengineering-nuclear-fusion-is-changing-helion.

Continue reading “A New Way to Achieve Nuclear Fusion: Helion” »

Dec 18, 2022

The laws of physics don’t actually exist, according to this physicist

Posted by in categories: information science, mathematics, physics

The laws of physics do not exist, a theoretical physicist named Sankar Das Sarma argues in a new column published by New Scientist. While we define the laws as the “ultimate laws” of our universe, Sarma says they are merely working descriptions, and that they are nothing more than mathematical equations that match with parts of nature.

Dec 18, 2022

Study uncovers existing limitations in the detection of entanglement

Posted by in categories: particle physics, quantum physics

Quantum entanglement is a process through which two particles become entangled and remain connected over time, even when separated by large distances. Detecting this phenomenon is of crucial importance for both the development of quantum technology and the study of quantum many-body physics.

Researchers at Tsinghua have recently carried out a study exploring the possible reasons why the reliable and efficient detection of in complex and “noisy” systems has often proved to be very challenging. Their findings, published in Physical Review Letters, hint at the existence of a trade-off between the effectiveness and efficiency of entanglement detection methods.

“Over 20 years ago, researchers discovered that most quantum states are entangled,” Xiongfeng Ma, one of the researchers who carried out the study, told Phys.org.

Dec 18, 2022

Scientists may have discovered two water worlds

Posted by in category: space

Two planets that astronomers discovered on the Kepler mission may not be the rocky, Earth-like bodies that we originally believed. Instead, a new study suggests that they could be two water worlds, and that they are less dense than astronomers originally posited. What’s intriguing about these worlds is that they are believed to be somewhat similar to Europa, which is a rocky core encased in water and capped in ice.

Dec 18, 2022

Constraining the Effect of Surfactants on the Hygroscopic Growth of Model Sea Spray Aerosol Particles

Posted by in categories: chemistry, particle physics

The cloud condensation nuclei activation of sea spray aerosol (SSA) is tightly linked to the hygroscopic properties of these particles and is defined by their physical and chemical properties. While hygroscopic sea salt in SSA strongly influences particle water uptake, the marine-derived components that make up the organic fraction of SSA constitute a complex mixture, and their effect on hygroscopic growth is unknown. To constrain the effect of organic compounds and specifically surface-active compounds that adsorb on particle interfaces, particle hygroscopic growth studies were performed on laboratory-generated model sea salt/sugar particles. For sea salt/glucose particles, ionic surfactants facilitated water uptake at low relative humidity (RH), increasing the particle growth factor (GF) by up to 7.61%, and caused a reduction in the deliquescence relative humidity (DRH), while nonionic surfactants had a minimal effect. Replacing glucose with polysaccharide laminarin in sea salt/sugar/surfactant particles caused a reduction in GF at low RHs and minimized the effect of ionic surfactants on the DRH. At RHs above the DRH, the addition of anionic or nonionic surfactants caused a decrease in GF for both sea salt/glucose and sea salt/laminarin particles. The addition of cationic surfactants, however, did not have a dampening effect on water uptake of sea salt/sugar particles and even showed a GF increase of up to 3.7% at 90% RH. An increase in the complexity of the sugar dampens the water uptake for particles containing nonionic surfactants but increases the water uptake for cationic surfactants. The cloud activation potential for 100 nm particles analyzed in this study is higher for ionic surfactants and decreases with an increase in surfactant molecular size when particle interfacial tension is considered. The surfactant effect on the hygroscopic growth and cloud activation potential of the particles containing sea salt/sugar is dependent on the surfactant ionicity and molecular size, the particle size and interfacial tension, and the interactions between inorganic salt and organic species under different RH conditions.