Menu

Blog

Page 4043

Jun 22, 2022

Organ storage a step closer with cryopreservation discovery

Posted by in categories: biotech/medical, chemistry, cryonics, finance, life extension

Australian scientists have taken the first step towards improved storage of human cells, which may lead to the safe storage of organs such as hearts and lungs.

The team’s discovery of new cryoprotective agents opens the door to many more being developed that could one day help to eliminate the need for organ transplant waiting lists. Their results are published in the Journal of Materials Chemistry B.

Cryopreservation is a process of cooling biological specimens down to very low temperatures so they can be stored for a long time. Storing cells through cryopreservation has had big benefits for the world—including boosting supplies at blood banks and assisting reproduction—but it is currently impossible to store organs and simple tissues.

Jun 22, 2022

Scientists observe longitudinal plasmonic field in nanocavity at subnano-scale

Posted by in categories: chemistry, nanotechnology

A group of scientists working on surface-enhanced Raman spectroscopy (SERS) has made a nanoruler to provide insight into the longitudinal plasmonic fields in nanocavities, according to research published in the Journal of the American Chemical Society.

SERS is a highly sensitive and powerful spectral analysis technique applicable in various fields. In to weak Raman scattering, SERS achieves a dramatically enhanced Raman signal of up to 1010–15, allowing the analysis of single molecules.

“How we develop the technology depends, to a large extent, on what we know about fields. In the experiments, we observed an uneven distribution in the plasmonic field at the nano-scale. But it lacks theoretic and experimental support. So we decided to figure it out,” said Yang Liangbao, who leads the team at the Hefei Institutes of Physical Science of the Chinese Academy of Sciences.

Jun 22, 2022

What did Megalodon eat? Anything it wanted, including other predators

Posted by in category: food

New Princeton research shows that prehistoric megatooth sharks—the biggest sharks that ever lived—were apex predators at the highest level ever measured.

Megatooth get their name from their massive teeth, which can each be bigger than a human hand. The group includes Megalodon, the largest shark that ever lived, as well as several related species.

While sharks of one kind or another have existed since long before the dinosaurs—for more than 400 million years—these megatooth sharks evolved after the dinosaurs went extinct and ruled the seas until just 3 million years ago.

Jun 22, 2022

Clean doping strategy produces more responsive phototransistors

Posted by in categories: chemistry, computing, engineering

The library of two-dimensional (2D) layered materials keeps growing, from basic 2D materials to metal chalcogenides. Unlike their bulk counterparts, 2D layered materials possess novel features that offer great potential in next-generation electronics and optoelectronics devices.

Doping engineering is an important and effective way to control the peculiar properties of 2D materials for the application in logical circuits, sensors, and optoelectronic devices. However, additional chemicals have to be used during the process, which may contaminate the materials. The techniques are only possible at specific steps during material synthesis or device fabrication.

In a new paper published in eLight, a team of scientists led by Professor Han Zhang of Shenzhen University and Professor Paras N Prasad of the University of Buffalo studied the implementation of neutron-transmutation doping to manipulate . Their paper, titled has demonstrated the change for the first time.

Jun 22, 2022

Building artificial nerve cells

Posted by in categories: biological, chemistry, computing, space

For the first time, researchers have demonstrated an artificial organic neuron, a nerve cell, that can be integrated with a living plant and an artificial organic synapse. Both the neuron and the synapse are made from printed organic electrochemical transistors.

On connecting to the carnivorous Venus flytrap, the electrical pulses from the artificial nerve cell can cause the plant’s leaves to close, although no fly has entered the trap. Organic semiconductors can conduct both electrons and ions, thus helping mimic the ion-based mechanism of pulse (action potential) generation in plants. In this case, the small electric pulse of less than 0.6 V can induce action potentials in the plant, which in turn causes the leaves to close.

“We chose the Venus flytrap so we could clearly show how we can steer the biological system with the artificial organic system and get them to communicate in the same language,” says Simone Fabiano, associate professor and principal investigator in organic nanoelectronics at the Laboratory of Organic Electronics, Linköping University, Campus Norrköping.

Jun 22, 2022

Team develops biobatteries that use bacteria to generate power for weeks

Posted by in categories: electronics, internet

As our tech needs grow and the Internet of Things increasingly connects our devices and sensors together, figuring out how to provide power in remote locations has become an expanding field of research.

Professor Seokheun “Sean” Choi—a faculty member in the Department of Electrical and Computer Engineering at Binghamton University’s Thomas J. Watson College of Engineering and Applied Science—has been working for years on biobatteries, which generate electricity through bacterial interaction.

One problem he encountered: The batteries had a lifespan limited to a few hours. That could be useful in some scenarios but not for any kind of long-term monitoring in remote locations.

Jun 22, 2022

Nanostructured surfaces for future quantum computer chips

Posted by in categories: computing, nanotechnology, quantum physics

Quantum computers are one of the key future technologies of the 21st century. Researchers at Paderborn University, working under Professor Thomas Zentgraf and in cooperation with colleagues from the Australian National University and Singapore University of Technology and Design, have developed a new technology for manipulating light that can be used as a basis for future optical quantum computers. The results have now been published in Nature Photonics.

New optical elements for manipulating light will allow for more advanced applications in modern information technology, particularly in quantum computers. However, a major challenge that remains is non-reciprocal light propagation through nanostructured surfaces, where these surfaces have been manipulated at a tiny scale.

Professor Thomas Zentgraf, head of the working group for ultrafast nanophotonics at Paderborn University, explains that “in reciprocal propagation, light can take the same path forward and backward through a structure; however, non-reciprocal propagation is comparable to a one-way street where it can only spread out in one direction.”

Jun 22, 2022

Can robotics help us achieve sustainable development?

Posted by in categories: governance, robotics/AI, sustainability

An international team of scientists, led by the University of Leeds, have assessed how robotics and autonomous systems might facilitate or impede the delivery of the UN Sustainable Development Goals (SDGs).

Their findings identify key opportunities and key threats that need to be considered while developing, deploying and governing robotics and autonomous systems.

The key opportunities robotics and autonomous systems present are through autonomous task completion, supporting human activities, fostering innovation, enhancing and improving monitoring. Emerging threats relate to reinforcing inequalities, exacerbating , diverting resources from tried-and-tested solutions, and reducing freedom and privacy through inadequate governance.

Jun 22, 2022

A self-supervised model that can learn various effective dialog representations

Posted by in categories: life extension, robotics/AI

Artificial intelligence (AI) and machine learning techniques have proved to be very promising for completing numerous tasks, including those that involve processing and generating language. Language-related machine learning models have enabled the creation of systems that can interact and converse with humans, including chatbots, smart assistants, and smart speakers.

To tackle dialog-oriented tasks, language models should be able to learn high-quality dialog representations. These are representations that summarize the different ideas expressed by two parties who are conversing about specific topics and how these dialogs are structured.

Researchers at Northwestern University and AWS AI Labs have recently developed a self-supervised learning model that can learn effective dialog representations for different types of dialogs. This model, introduced in a paper pre-published on arXiv, could be used to develop more versatile and better performing dialog systems using a limited amount of training data.

Jun 22, 2022

Model moves computers closer to understanding human conversation

Posted by in category: robotics/AI

An engineer from the Johns Hopkins Center for Language and Speech Processing has developed a machine learning model that can distinguish functions of speech in transcripts of dialogs outputted by language understanding, or LU, systems in an approach that could eventually help computers “understand” spoken or written text in much the same way that humans do.

Developed by CLSP Assistant Research Scientist Piotr Zelasko, the new model identifies the intent behind words and organizes them into categories such as “Statement,” “Question,” or “Interruption,” in the final transcript: a task called “dialog act recognition.” By providing other models with a more organized and segmented version of text to work with, Zelasko’s model could become a first step in making sense of a conversation, he said.

“This new method means that LU systems no longer have to deal with huge, unstructured chunks of text, which they struggle with when trying to classify things such as the topic, sentiment, or intent of the text. Instead, they can work with a series of expressions, which are saying very specific things, like a question or interruption. My model enables these systems to work where they might have otherwise failed,” said Zelasko, whose study appeared recently in Transactions of the Association for Computational Linguistics.