Toggle light / dark theme

A camel cannot go through the eye of a needle. But researchers at ETH Zurich have now achieved something that—figuratively speaking—comes quite close. They have developed a new approach to minimally invasive surgical instruments, allowing large objects to be brought into the body through a narrow catheter. Their demonstration study has been published in the journal Nature Communications.

This works as follows: The researchers disassemble such devices into individual parts and then slide them through the catheter in a row, like a string of pearls. At the end of the , the parts assemble themselves into a predefined shape thanks to built-in magnets.

In its research, the team—led by ETH doctoral student Hongri Gu, who is now a at the University of Konstanz—was primarily concerned with demonstrating the many possibilities of this new approach. In a relatively simple way and using 3D printing, the scientists also constructed an endoscopic grasper. Moreover, they showed that the new approach makes it possible to assemble an endoscope head consisting of three parts.

US banks are slamming the doors on innocent customers with zero notice, according to a new report.

Supposedly suspicious activity is triggering abrupt account closures, leading to customers to discover something is wrong then they try to spend their money, reports the New York Times.

One such member of Chase named Naafeh Dhillon tried to pay for dinner in December and had both his credit and debit cards declined.

Tesla is preparing to launch Powerwall 3, the third generation of its home battery pack, according to information obtained by Electrek.

In 2015, when launching its Tesla Energy division, Tesla launched the first generation of the Powerwall, and it quickly became, by far, the most popular home battery pack in the residential market.

Shortly after, Tesla launched Powerwall 2, a new version of the residential battery pack with more energy and power capacity.

An astronomical discovery was made in New Mexico after an observatory called the Very Large Array picked up radio waves from a neighboring star system.

Scientists near Magdalena were looking for protective magnetic fields similar to Earth’s. The planet, titled YZ Ceti B, might be the first planet outside the solar system discovered with those properties, located just 12 light years away from Earth.

Until now, it was unclear as to whether drugs that clear amyloid, which accumulate in the brain during aging and accompany diseases such as Alzheimer’s, have any influence over cognitive decline.

Previous studies have aimed to find this out, but results have been inconclusive due to study designs, hard-to-interpret data, and other issues that muddy the waters. March 10-14th saw the 15th International Conference on Alzheimer’s and Parkinson’s Diseases being held (virtually of course), where Dr. Mark Mintun of Eli Lilly presented data that, at least somewhat, affirmatively answers the question [1].

In the math of particle physics, every calculation should result in infinity. Physicists get around this by just ignoring certain parts of the equations — an approach that provides approximate answers. But by using the techniques known as “resurgence,” researchers hope to end the infinities and end up with perfectly precise predictions.

Shortly after Max Planck shook the scientific world with ideas about the fundamental quantization of energy, researchers built and leveraged theories of quantum mechanics to resolve physical phenomena that had previously been unexplainable, including the behavior of heat in solids and light absorption on an atomic level. In the 120-plus years since, researchers have looked beyond physics and used quantum theory’s same perplexing — even “spooky,” according to Einstein — laws to solve inexplicable phenomena in a variety of other disciplines.

Today, researchers at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, are applying quantum mechanics to biology to better understand of one of nature’s biggest mysteries — magnetosensitivity, an organism’s ability to sense Earth’s magnetic field and use it as a tool to adjust some biological processes. And they’ve found some surprising results.

In a recent study, APL research engineer and scientist Carlos Martino and his APL colleagues Nam Le, Michael Salerno, Janna Domenico, Christopher Stiles, Megan Hannegan, and Ryan McQuillen, along with Ilia Solov’yov from the Carl von Ossietzky University of Oldenburg in Germany, found that an enzyme that plays a central role in human metabolism has some of the same key features as a magnetically sensitive protein found in birds.

Exciting.


The search for the chemical origins of life represents a long-standing and continuously debated enigma. Despite its exceptional complexity, in the last decades the field has experienced a revival, also owing to the exponential growth of the computing power allowing for efficiently simulating the behavior of matter—including its quantum nature—under disparate conditions found, e.g., on the primordial Earth and on Earth-like planetary systems (i.e., exoplanets). In this minireview, we focus on some advanced computational methods capable of efficiently solving the Schrödinger equation at different levels of approximation (i.e., density functional theory)—such as ab initio molecular dynamics—and which are capable to realistically simulate the behavior of matter under the action of energy sources available in prebiotic contexts.