Toggle light / dark theme

An experimental campaign was conducted on the Säntis mountain in north-eastern Switzerland during the summer of 2021 with a high-repetition-rate terawatt laser. The guiding of an upward negative lightning leader over a distance of 50 m was recorded by two separate high-speed cameras.


A terawatt laser filament is shown to be able to guide lightning over a distance of 50 m in field trials on the Säntis mountain in the Swiss Alps.

Plants are often thought of as sources of food, oxygen, and decoration, but not as a source of electricity. However, scientists have discovered that by harnessing the natural transport of electrons within plant cells, it is possible to generate electricity as part of a green, biological solar cell. In a recent study published in ACS Applied Materials & Interfaces, researchers for the first time used a succulent plant to create a living “bio-solar cell” that runs on photosynthesis.

Photosynthesis is how plants and some microorganisms use sunlight to synthesize carbohydrates from carbon dioxide and water.

Researchers in Drexel University’s College of Engineering have developed a thin film device, fabricated by spray coating, that can block electromagnetic radiation with the flip of a switch. The breakthrough, enabled by versatile two-dimensional materials called MXenes, could adjust the performance of electronic devices, strengthen wireless connections and secure mobile communications against intrusion.

The team, led by Yury Gogotsi, Ph.D., Distinguished University and Bach professor in Drexel’s College of Engineering, previously demonstrated that the two-dimensional layered MXene materials, discovered just over a decade ago, when combined with an , can be turned into a potent active shield against .

This latest MXene discovery, reported in Nature Nanotechnology, shows how this shielding can be tuned when a small voltage—less than that produced by an alkaline battery—is applied.

Findings solve a 60-year-old problem, researchers say A new 10-minute scan could make way for the most common cause of high blood pressure to be detected and cured, new research has suggested. Using a new type of CT scan, doctors were able to cure high blood pressure by lighting up nodules (tiny growths) in a hormone gland cure and removing them.

The Space Solar Power Project (SSPP) began in 2011 when Donald Bren — philanthropist, chairman of the Irvine Company, and a lifetime member of the Caltech Board of Trustees — and Caltech’s then-president Jean-Lou Chameau came together to discuss the potential for a space-based solar power research project. By 2013, Bren and his wife (Caltech trustee Brigitte Bren) began funding the project through the Donald Bren Foundation, which will eventually exceed $100 million. As Bren said in a recent Caltech press release:

“For many years, I’ve dreamed about how space-based solar power could solve some of humanity’s most urgent challenges. Today, I’m thrilled to be supporting Caltech’s brilliant scientists as they race to make that dream a reality.”

While the technology behind solar cells has existed since the late 19th century, generating solar power in space presents some serious challenges. For one thing, solar panels are heavy and require extensive wiring to transmit power, making them expensive and difficult to launch. To overcome these challenges, the SSPP team had to create a satellite that would be light enough for cost-effective launches yet strong enough to withstand the extreme environment of space. This required envisioning and developing new technologies, architectures, materials, and structures.

Scientists at Harvard Medical School have investigated why we age, and identified a possible way to reverse it. In tests in mice, the team showed that epigenetic “software glitches” drive the symptoms of aging – and a system reboot can reverse them, potentially extending lifespan.

Our genome contains our complete DNA blueprint, which is found in every single cell of our bodies. But it’s not the whole picture – an extra layer of information, known as the epigenome, sits above that and controls which genes are switched on and off in different types of cells. It’s as though every cell in our body is working from the same operating manual (the genome), but the epigenome is like a table of contents that directs different cells to different chapters (genes). After all, lung cells need very different instructions to heart cells.

Environmental and lifestyle factors like diet, exercise and even childhood experiences could change epigenetic expression over our lifetimes. Epigenetic changes have been linked to the rate of biological aging, but whether they drove the symptoms of aging or were a symptom themselves remained unclear.

Chromatin structures and transcriptional networks are known to specify cell identity during development which directs cells into metaphorical valleys in the Waddington landscape. Cells must retain their identity through the preservation of epigenetic information and a state of low Shannon entropy for the maintenance of optimal function. Yeast studies in the 1990s have reported that a loss of epigenetic information compared to genetics can cause aging. Few other studies also confirmed that epigenetic changes are not just a biomarker but a cause of aging in yeasts.

Epigenetic changes associated with aging include changes in DNA methylation (DNAme) patterns, H3K27me3, H3K9me3, and H3K9me3. Many epigenetic changes have been observed to follow a specific pattern. However, the reason for changes in the mammalian epigenome is not yet known. A few clues can be obtained from yeast, where DSB is a significant factor whose repair requires epigenetic regulators Esa1, Gcn5, Rpd3, Hst1, and Sir2. As per the ‘‘RCM’’ hypothesis and ‘Information Theory of Aging’’, aging in eukaryotes occurs due to the loss of epigenetic information and transcriptional networks in response to cellular damage such as a crash injury or a DSB.

A new study in the journal Cell aimed to determine whether epigenetic changes are a cause of mammalian aging.

WALLOPS ISLAND, Va. — A rocket launch set for Monday, January 23 in Virginia will be visible to much of the east coast of the United States, according to NASA.

The 59-foot-tall Electron rocket from Rocket Lab USA is set to take off from NASA’s Wallops Flight Facility along the southeastern coast of Virginia sometime between 6 and 8 p.m.

The mission, named “Virginia is for Launch Lovers,” will deploy radio frequency monitoring satellites for Virginia based geospatial analytics company HawkEye 360. NASA said the mission will help foster a growing low-Earth space economy.

Since its launch in November last year, ChatGPT has become an extraordinary hit. Essentially a souped-up chatbot, the AI program can churn out answers to the biggest and smallest questions in life, and draw up college essays, fictional stories, haikus, and even job application letters. It does this by drawing on what it has gleaned from a staggering amount of text on the internet, with careful guidance from human experts. Ask ChatGPT a question, as millions have in recent weeks, and it will do its best to respond – unless it knows it cannot. The answers are confident and fluently written, even if they are sometimes spectacularly wrong.

The program is the latest to emerge from OpenAI, a research laboratory in California, and is based on an earlier AI from the outfit, called GPT-3. Known in the field as a large language model or LLM, the AI is fed hundreds of billions of words in the form of books, conversations and web articles, from which it builds a model, based on statistical probability, of the words and sentences that tend to follow whatever text came before. It is a bit like predictive text on a mobile phone, but scaled up massively, allowing it to produce entire responses instead of single words.