Menu

Blog

Page 3

Aug 23, 2024

A hippocampal circuit mechanism to balance memory reactivation during sleep

Posted by in category: neuroscience

Memory consolidation involves the synchronous reactivation of hippocampal cells active during recent experience in sleep sharp-wave ripples (SWRs). How this increase in firing rates and synchrony after learning is counterbalanced to preserve network stability is not understood. We discovered a network event generated by an intrahippocampal circuit formed by a subset of CA2 pyramidal cells to cholecystokinin-expressing (CCK+) basket cells, which fire a barrage of action potentials (“BARR”) during non–rapid eye movement sleep. CA1 neurons and assemblies that increased their activity during learning were reactivated during SWRs but inhibited during BARRs. The initial increase in reactivation during SWRs returned to baseline through sleep. This trend was abolished by silencing CCK+ basket cells during BARRs, resulting in higher synchrony of CA1 assemblies and impaired memory consolidation.

Aug 23, 2024

Researchers propose a smaller, more noise-tolerant quantum factoring circuit for cryptography

Posted by in categories: computing, encryption, information science, quantum physics

The most recent email you sent was likely encrypted using a tried-and-true method that relies on the idea that even the fastest computer would be unable to efficiently break a gigantic number into factors.

Quantum computers, on the other hand, promise to rapidly crack complex cryptographic systems that a classical computer might never be able to unravel. This promise is based on a quantum factoring proposed in 1994 by Peter Shor, who is now a professor at MIT.

But while researchers have taken great strides in the last 30 years, scientists have yet to build a quantum computer powerful enough to run Shor’s algorithm.

Aug 23, 2024

Princeton Lab perfects lithium vapor cave in a nuclear fusion leap

Posted by in categories: innovation, nuclear energy

Scientists at PPPL have developed innovative solutions to manage the intense heat generated within fusion reactors.

Aug 23, 2024

“Hydrogel Brain” Learns To Play Pong

Posted by in categories: biotech/medical, neuroscience

Scientists from the University of Reading developed a hydrogel that learns to play ‘Pong’ and mimics heartbeats in sync with a pacemaker. The study suggests hydrogels can exhibit adaptive behaviors.

Aug 23, 2024

Miller School Scientists Reveal Mechanisms Behind Gene Expression in Mitochondria

Posted by in categories: biotech/medical, chemistry, health, neuroscience

A molecular biology research team at the University of Miami Miller School of Medicine has become the first to map out how mitochondrial messenger RNA folds in human cells.

The research advances knowledge about the expression of genes in the mitochondria and paves the way for identification of therapeutic targets for mitochondrial neurodegenerative diseases.

“Dysfunctional mitochondria can cause devastating diseases, frequently with childhood-onset, known as mitochondrial encephalomyopathies. Despite advances in identifying genes responsible for these disorders, their pathophysiological mechanisms have been poorly understood,” said Antoni Barrientos, Ph.D., professor of neurology and biochemistry and molecular biology at the Miller School. “This was partly due to a lack of a full understanding of mitochondrial gene expression. Specifically, nothing was known about how mitochondrial messenger RNA folds and how that could influence its stability and translation in health and disease.”

Aug 23, 2024

The Evolutionary Argument for Phenomenal Powers Hedda Hassel Mørch Forthcoming in Philosophical Perspectives 1 Introduction Epiphenomenalism is the view that phenomenal properties — which characterize what it is like

Posted by in category: futurism

PDF Host read free online — Epiphenomenalism.

Aug 23, 2024

A mechanism that transfers energy from nitrogen to argon enables bidirectional cascaded lasing in atmospheric air

Posted by in categories: energy, physics

To produce light, lasers typically rely on optical cavities, pairs of mirrors facing each other that amplify light by bouncing it back and forth. Recently, some physicists have been investigating the generation of “laser light” in open air without the use of optical cavities, a phenomenon known as cavity-free lasing in atmospheric air.

Aug 23, 2024

SpaceX finishes second Starship launch tower at Starbase

Posted by in category: space travel

SpaceX finished construction of its second launch tower down at Starbase, Texas for its Starship rocket. This comes hopefully a few weeks out from the next launch of the company’s next generation rocket.

Over the last few months SpaceX has cleared land and constructed a new launch tower at its research, development, and launch facilities down at Starbase, Texas. This now gives the company three towers total for Starship, two at Starbase and one more over in Florida at LC-39A.

There is still plenty of work to be done at the pad, it still needs the launch table, chopsticks, plumbing for propellent, etc. However, the biggest and most prominent feature is now complete.

Aug 23, 2024

‘I can look and it goes where I want it to’: Neuralink participant is using his brain chip to play Counter-Strike 2 with just his mind

Posted by in categories: computing, neuroscience

I’ll never not see Neuralink as some kind of sorcery.

Aug 23, 2024

Quantum sensor detects magnetic and electric fields from a single atom

Posted by in categories: particle physics, quantum physics

The next step, says Esat, is to increase the new device’s magnetic field sensitivity by implementing more advanced sensing protocols based on pulsed electron spin resonance schemes and by finding molecules with longer spin decoherence times. “We hope to increase the sensitivity by a factor of about 1,000, which would allow us to detect nuclear spins at the atomic scale,” he says.

A holy grail for quantum sensing

The new atomic-scale quantum magnetic field sensor should also make it possible to resolve spins in certain emerging two-dimensional quantum materials. These materials are predicted to have many complex magnetic orders, but they cannot be measured with existing instruments, Heinrich and his QNS colleague Yujeong Bae note. Another possibility would be to use the sensor to study so-called encapsulated spin systems such as endohedral-fullerenes, which comprise a magnetic core surrounded by an inert carbon cage.

Page 3 of 11,63212345678Last