Menu

Blog

Page 3

Jan 22, 2025

Plastic supercapacitors could solve energy storage problems

Posted by in categories: computing, virtual reality, wearables

Microscale light-emitting diodes (micro-LEDs) are emerging as a next-generation display technology for optical communications, augmented and virtual reality, and wearable devices. Metal-halide perovskites show great potential for efficient light emission, long-range carrier transport, and scalable manufacturing, making them potentially ideal candidates for bright LED displays.

However, manufacturing thin-film perovskites suitable for micro-LED displays faces serious challenges. For example, thin-film perovskites may exhibit inhomogeneous light emission, and their surfaces may be unstable when subjected to lithography. For these reasons, solutions are needed to make thin-film perovskites compatible with micro-LED devices.

Recently, a team of Chinese researchers led by Professor Wu Yuchen at the Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences has made significant strides in overcoming these challenges. The team has developed a novel method for the remote epitaxial growth of continuous crystalline perovskite thin films. This advance allows for seamless integration into ultrahigh-resolution micro-LEDs with pixels less than 5 μm.

Jan 22, 2025

Drawing a line from the gut microbiome to inflammation and depression

Posted by in categories: biotech/medical, health, neuroscience

It’s become increasingly clear that the gut microbiome can affect human health, including mental health. Which bacterial species influence the development of disease and how they do so, however, is only just starting to be unraveled.

For instance, some studies have found compelling links between one species of gut bacteria, Morganella morganii, and major depressive disorder. But until now, no one could tell whether this bacterium somehow helps drive the disorder, the disorder alters the microbiome, or something else is at play.

Harvard Medical School researchers have now pinpointed a biologic mechanism that strengthens the evidence that M. morganii influences brain health and provides a plausible explanation for how it does so.

Jan 22, 2025

Innovative process converts urine into slow-release crystal fertilizer

Posted by in categories: food, innovation

A team of chemists and agriculture specialists has developed a way to transform urea in wastewater, into percarbamide, which can be used as a fertilizer. In their paper published in the journal Nature Catalysis, the group describes their process and how well the resulting product worked in growing edible crops.

Urine is seen as a source of because it is high in nitrogen and other rich compounds that are good for . Many home gardeners know that urine can be used as a fertilizer both for flower and vegetable gardens—the key is to mix it with a lot of water to prevent burning the plants.

Prior efforts to use urine as a source of fertilizer on a larger scale, however, have proven to be unfeasible due to industrial inefficiencies; it is much easier to use standard methods that involve extracting nitrogen from the air. In this new effort, the researchers have developed a way to use human and animal as a fertilizer for growing edible crops.

Jan 22, 2025

Brain network model can predict when people will feel surprised

Posted by in category: neuroscience

Surprise is a key human emotion that is typically felt when something that we are witnessing or experiencing differs from our expectations. This natural human response to the unexpected has been the focus of numerous psychology studies, which uncovered some of its underlying neural processes.

Researchers at the University of Chicago have developed a brain network model that can predict people’s surprise. In a paper published in Nature Human Behaviour, they showed that this model generalized well across various tasks, predicting the surprise of individuals who were performing a task or watching different videos containing unexpected elements.

The study carried out by these researchers builds on previous research focusing on surprise. Earlier work found that humans experience surprise when reality clashes with their expectations in many different situations. Some of these past works discovered patterns of brain activity associated with each specific experience of surprise.

Jan 22, 2025

Nanoislands on silicon enable switchable topological textures for new electronic applications

Posted by in categories: computing, nanotechnology, physics

Ferroelectrics at the nanoscale exhibit a wealth of polar and sometimes swirling (chiral) electromagnetic textures that not only represent fascinating physics, but also promise applications in future nanoelectronics. For example, ultra-high-density data storage or extremely energy-efficient field-effect transistors. However, a sticking point has been the stability of these topological textures and how they can be controlled and steered by an external electrical or optical stimulus.

A team led by Prof. Catherine Dubourdieu (HZB and FU Berlin) has now published a paper in Nature Communications that opens up new perspectives. Together with partners from the CEMES-CNRS in Toulouse, the University of Picardie in Amiens and the Jozef Stefan Institute in Ljubljana, they have thoroughly investigated a particularly interesting class of nanoislands on silicon and explored their suitability for electrical manipulation.

“We have produced BaTiO3 nanostructures that form tiny islands on a silicon substrate,” explains Dubourdieu. The nano-islands are trapezoidal in shape, with dimensions of 30–60 nm (on top), and have stable polarization domains.

Jan 22, 2025

SMART: One step closer to nuclear fusion with its first plasma

Posted by in categories: engineering, nuclear energy, physics, sustainability

In a pioneering approach to achieve fusion energy, the SMART device has successfully generated its first tokamak plasma. This step brings the international fusion community closer to achieving sustainable, clean, and virtually limitless energy through controlled fusion reactions.

The work is published in the journal Nuclear Fusion.

The SMART tokamak, a state-of-the-art experimental fusion device designed, constructed and operated by the Plasma Science and Fusion Technology Laboratory of the University of Seville, is a unique spherical tokamak due to its flexible shaping capabilities. SMART has been designed to demonstrate the unique physics and engineering properties of Negative Triangularity shaped plasmas towards compact fusion power plants based on Spherical Tokamaks.

Jan 22, 2025

Scientists harness the power of ‘layered’ crystals for energy innovation

Posted by in categories: nanotechnology, solar power, sustainability

University of Missouri scientists are unlocking the secrets of halide perovskites—a material that’s poised to reshape our future by bringing us closer to a new age of energy-efficient optoelectronics.

Suchi Guha and Gavin King, two physics professors in Mizzou’s College of Arts and Science, are studying the material at the nanoscale: a place where objects are invisible to the naked eye. At this level, the extraordinary properties of halide perovskites come to life, thanks to the material’s unique structure of ultra-thin crystals—making it astonishingly efficient at converting sunlight into energy.

Think that are not only more affordable but also far more effective at powering homes. Or LED lights that burn brighter and last longer while consuming less energy.

Jan 22, 2025

Non-linear enhancement of ultrafast X-ray diffraction through transient resonances

Posted by in category: nanotechnology

Diffraction-before-destruction of ultrashort X-ray pulses can visualize non-equilibrium processes at the nanoscale with sub-femtosecond precision. Here, the authors demonstrate how the brightness and the spatial resolution of such snapshots can be substantially increased despite ionization.

Jan 22, 2025

Electrons in twisted graphene form novel 1/3 fractional quantum Hall state

Posted by in categories: particle physics, quantum physics

A research team discovered a quantum state in which electrons move in a completely new way under a twisted graphene structure. The unique electronic state is expected to contribute to the development of more efficient and faster electronic devices. It may also be applicable to technologies such as quantum memory, which can process complex computations.

Quantum physics is a crucial theory that attempts to understand and explain how atoms and particles interact and move in nature. Such an understanding serves as the basis for designing new technologies that control or utilize nature at the microscopic level. The research conducted holds significance in discovering the , which is difficult to implement with conventional semiconductor technologies, and in greatly expanding future possibilities for quantum technologies.

Graphene is a material as thin as a piece of paper and is made of carbon atoms. This study utilized a unique structure comprising two slightly twisted layers of graphene, observing a new quantum state. When compared to two transparent films, each film has regular patterns, and when they are rotated slightly, the patterns overlap to reveal new patterns.

Jan 22, 2025

Chinese ‘artificial sun’ sets a record towards fusion power generation

Posted by in categories: nuclear energy, physics

The Experimental Advanced Superconducting Tokamak (EAST), commonly known as China’s “artificial sun,” has achieved a remarkable scientific milestone by maintaining steady-state high-confinement plasma operation for an impressive 1,066 seconds. This accomplishment, reached on Monday, sets a new world record and marks a significant breakthrough in the pursuit of fusion power generation.

The duration of 1,066 seconds is a critical advancement in fusion research. This milestone, achieved by the Institute of Plasma Physics (ASIPP) at Hefei Institutes of Physical Science (HFIPS) of the Chinese Academy of Sciences, far surpasses the previous world record of 403 seconds, also set by EAST in 2023.

The ultimate goal of developing an artificial sun is to replicate the nuclear fusion processes that occur in the sun, providing humanity with a limitless and clean energy source, and enabling exploration beyond our solar system.

Page 3 of 12,39812345678Last