Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Synthetic ‘muscle’ with microfluidic blood vessels shows promise for soft robotics

Researchers are continuing to make progress on developing a new synthetic material that behaves like biological muscle, an advancement that could provide a path to soft robotics, prosthetic devices and advanced human-machine interfaces. Their research, recently published in Advanced Functional Materials, demonstrates a hydrogel-based actuator system that combines movement, control and fuel delivery in a single integrated platform.

Biological muscle is one of nature’s marvels, said Stephen Morin, associate professor of chemistry at the University of Nebraska–Lincoln. It can generate impressive force, move quickly and adapt to many different tasks. It is also remarkable in its flexibility in terms of energy use and can draw on sugars, fats and other chemical stores, converting them into usable energy exactly when and where they are needed to make muscles move.

A synthetic version of muscle is one of the Holy Grails of material science.

Thinking on different wavelengths: New approach to circuit design introduces next-level quantum computing

Quantum computing represents a potential breakthrough technology that could far surpass the technical limitations of modern-day computing systems for some tasks. However, putting together practical, large-scale quantum computers remains challenging, particularly because of the complex and delicate techniques involved.

In some quantum computing systems, single ions (charged atoms such as strontium) are trapped and exposed to electromagnetic fields including laser light to produce certain effects, used to perform calculations. Such circuits require many different wavelengths of light to be introduced into different positions of the device, meaning that numerous laser beams have to be properly arranged and delivered to the designated area. In these cases, the practical limitations of delivering many different beams of light around within a limited space become a difficulty.

To address this, researchers from The University of Osaka investigated unique ways to deliver light in a limited space. Their work revealed a power-efficient nanophotonic circuit with optical fibers attached to waveguides to deliver six different laser beams to their destinations. The findings have been published in APL Quantum.

Raman sensors with push-pull alkyne tags amplify weak signals to track cell chemistry

Seeing chemistry unfold inside living cells is one of the biggest challenges of modern bioimaging. Raman microscopy offers a powerful way to meet this challenge by reading the unique vibrational signatures of molecules. However, cells are extraordinarily complex environments filled with thousands of biomolecules.

To make specific molecules stand out, researchers often attach small chemical probes, such as alkyne tags, that produce signals in a so-called cell-silent spectral window where native cellular components do not scatter light. This allows Raman microscopes to selectively detect the tagged molecules against an otherwise crowded molecular background. Despite this advantage, the widespread adoption of Raman microscopy in biology has been limited by one fundamental problem: Raman signals are extremely weak.

People are swayed by AI-generated videos even when they know they’re fake, study shows

Generative deep learning models are artificial intelligence (AI) systems that can create texts, images, audio files, and videos for specific purposes, following instructions provided by human users. Over the past few years, the content generated by these models has become increasingly realistic and is often difficult to distinguish from real content.

Many of the videos and images circulating on social media platforms today are created by generative deep learning models, yet the effects of these videos on the users viewing them have not yet been clearly elucidated. Concurrently, some computer scientists have proposed strategies to mitigate the possible adverse effects of fake content diffusion, such as clearly labeling these videos as AI-generated.

Researchers at University of Bristol recently carried out a new study set out to better understand the influence of deepfake videos on viewers, while also assessing user perceptions when AI-generated videos are labeled as “fake.” Their findings, published in Communications Psychology, suggest that knowing that a video was created with AI does not always make it less “persuasive” for viewers.

Data-driven 3D chromosome model reveals structural and dynamic features of DNA

Chromosomes are masters of organization. These long strings of DNA fold down into an ensemble of compact structures that keep needed parts of the genome accessible while tucking away those that aren’t used as often. Understanding the complexity of these structures has been challenging; chromosomes are large systems, and deciphering the structure and dynamics requires a combination of experimental data and theoretical approaches.

The FI-Chrom method, described in a recent publication by Rice’s José Onuchic and Vinícius Contessoto, is a new and effective approach for creating 3D maps of chromosomes from real-world data.

The study is published in the journal Proceedings of the National Academy of Sciences.

A new route to synthesize multiple functionalized carbon nanohoops

The field of nanomaterials is witnessing a transformative shift at the intersection of organic chemistry and molecular engineering. Among the most promising molecular structures are carbon nanohoops, of which [n]cycloparaphenylenes ([n]CPPs) are a representative example.

These ring-shaped structures represent the smallest possible slices of carbon nanotubes, which themselves are a widely renowned material of the 21st century.

Given that their structures can, in principle, be precisely tuned at the atomic level, nanohoops hold great potential as molecular components for next-generation optoelectronic devices, including high-resolution displays, photonic circuits, and responsive sensing materials.

New study finds heart attacks involve brain and immune system, not just heart

Arteries become clogged. Blood flow is restricted and oxygen is cut off. The result is a heart attack, the world’s leading cause of death.

The conventional approach to studying and treating these episodes is to focus on the heart as an isolated organ. University of California San Diego research, led by the School of Biological Sciences, is upending the way heart attacks are viewed under a transformative new understanding of how cardiac events are interconnected with other systems.

In a study published in the journal Cell, Postdoctoral Scholar Saurabh Yadav, Assistant Professor Vineet Augustine and their colleagues describe a comprehensive new picture of heart attacks and their resulting damage by connecting the heart, the brain and the nervous and immune systems.

‘Spectral slimming’ yields ultranarrow plasmons in single metal nanoparticles

Researchers have developed a new strategy to overcome a long-standing limitation in plasmonic loss by reshaping light–matter interactions through substrate engineering.

“Why can’t plasmons achieve quality factors as high as dielectrics?” “Because metals heat up easily—they’re inherently lossy.” This exchange is almost inevitable whenever plasmonic nanostructures come up in a discussion.

Now, researchers from the Singapore University of Technology and Design (SUTD) and international collaborators have shown that this long-held limitation is not as fundamental as once believed. The research team has demonstrated a powerful new strategy to control optical spectra at the nanoscale, enabling high-quality (high-Q) plasmonic hotspots in individual metal nanoparticles, a long-standing challenge to slim spectra in plasmonics.

Physicists eye emerging technology for solar cells in outer space

Solar cells face significant challenges when deployed in outer space, where extremes in the environment decrease the efficiency and longevity they enjoy back on Earth. University of Toledo physicists are taking on these challenges at the Wright Center for Photovoltaics Innovation and Commercialization, in line with a large-scale research project supported by the Air Force Research Laboratory.

One recent advancement pertains to an emerging technology that utilizes antimony compounds as light-absorbing semiconductors. A group of UToledo faculty and students recently published a first-of-its-kind assessment exploring the promising characteristics of these antimony chalcogenide-based solar cells for space applications in the journal Solar RRL, which highlighted the work on its front cover.

Antimony chalcogenide solar cells exhibit superior radiation robustness compared to the conventional technologies we’re deploying in space,” said Alisha Adhikari, a doctoral student in physics who co-led the team of undergraduate, graduate and faculty researchers at UToledo. “But they’ll need to become much more efficient before they become a competitive alternative for future space missions.”

/* */