Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

New way to read data in antiferromagnets unlocks their use as computer memory

Scientists led by Nanyang Technological University, Singapore (NTU Singapore) investigators have made a significant advance in developing alternative materials for the high-speed memory chips that let computers access information quickly and that bypass the limitations of existing materials.

They have discovered a way that allows them to make sense of previously hard-to-read data stored in these , known as antiferromagnets.

Researchers consider antiferromagnets to be attractive materials for making because they are potentially more energy efficient than traditional ones made of silicon. Memory chips made of antiferromagnets are not subject to the size and speed constraints nor corruption issues that are inherent to chips made with certain .

AI learns to build simple equations for complex systems

A research team at Duke University has developed a new AI framework that can uncover simple, understandable rules that govern some of the most complex dynamics found in nature and technology.

The AI system works much like how history’s great “dynamicists”—those who study systems that change over time—discovered many laws of physics that govern such systems’ behaviors. Similar to how Newton, the first dynamicist, derived the equations that connect force and movement, the AI takes data about how complex systems evolve over time and generates equations that accurately describe them.

The AI, however, can go even further than human minds, untangling complicated nonlinear systems with hundreds, if not thousands, of variables into simpler rules with fewer dimensions.

New AI technology can provide rapid and reliable dementia diagnosis

Researchers at Örebro University have developed two new AI models that can analyse the brain’s electrical activity and accurately distinguish between healthy individuals and patients with dementia, including Alzheimer’s disease.

“Early diagnosis is crucial in order to be able to take proactive measures that slow down the progression of the disease and improve the patient’s quality of life,” says Muhammad Hanif, researcher in informatics at Örebro University.

A Possible Role of Intestinal Microbiota in the Pathogenesis of Ankylosing Spondylitis

Ankylosing spondylitis (AS) is a chronic inflammatory disease primarily affecting the sacroiliac joints and the spine, for which the pathogenesis is thought to be a result of the combination of host genetic factors and environmental triggers. However, the precise factors that determine one’s susceptibility to AS remain to be unraveled. With 100 trillion bacteria residing in the mammalian gut having established a symbiotic relation with their host influencing many aspects of host metabolism, physiology, and immunity, a growing body of evidence suggests that intestinal microbiota may play an important role in AS. Several mechanisms have been suggested to explain the potential role of the microbiome in the etiology of AS, such as alterations of intestinal permeability, stimulation of immune responses, and molecular mimicry.

Neutrality isn’t a safe strategy on controversial issues, research shows

Researchers Rachel Ruttan and Katherine DeCelles of the University of Toronto’s Rotman School of Management are anything but neutral on neutrality. The next time you’re tempted to play it safe on a hot-button topic, their evidence-based advice is to consider saying what you really think.

That’s because their recent research, based on more than a dozen experiments with thousands of participants, reveals that people take a dim view of others’ professed neutrality on controversial issues, rating them just as morally suspect as those expressing an opposing viewpoint, if not worse.

“Neutrality gives you no advantage over opposition,” says Prof. Ruttan, an associate professor of organizational behavior and human resource management with an interest in moral judgment and prosocial behavior. “You’re not pleasing anyone.”

What’s powering these mysterious, bright blue cosmic flashes? Astronomers find a clue

Among the more puzzling cosmic phenomena discovered over the past few decades are brief and very bright flashes of blue and ultraviolet light that gradually fade away, leaving behind faint X-ray and radio emissions. With slightly more than a dozen discovered so far, astronomers have debated whether they are produced by an unusual type of supernova or by interstellar gas falling into a black hole.

Analysis of the brightest such burst to date, discovered last year, shows that they’re neither.

Instead, a team of astronomers led by researchers from the University of California, Berkeley, concluded that these so-called luminous fast blue optical transients (LFBOTs) are caused by an extreme tidal disruption, where a black hole of up to 100 times the mass of our sun completely shreds its massive star companion within days.

Possible ‘superkilonova’ exploded not once but twice

When the most massive stars reach the ends of their lives, they blow up in spectacular supernova explosions, which seed the universe with heavy elements such as carbon and iron. Another type of explosion—the kilonova—occurs when a pair of dense dead stars, called neutron stars, smash together, forging even heavier elements such as gold and uranium. Such heavy elements are among the basic building blocks of stars and planets.

So far, only one kilonova has been unambiguously confirmed to date, a historic event known as GW170817, which took place in 2017. In that case, two neutron stars smashed together, sending ripples in space-time, known as gravitational waves, as well as light waves across the cosmos.

The cosmic blast was detected in gravitational waves by the National Science Foundation’s Laser Interferometer Gravitational-wave Observatory (LIGO) and its European partner, the Virgo gravitational-wave detector, and in light waves by dozens of ground-based and space telescopes around the world.

/* */