The advent and widespread adoption of diverse widefield imaging techniques across multiple spatial resolutions has demonstrated that cortical activity often propagates as waves structured in both time and space. This realization allows neuroscientists to draw on a rigorous theoretical framework developed in wave physics to complement and inform the rapid neuroscientific advances shedding light on the physiological mechanisms and psychological implications of cortical wave dynamics. In support of this synthesis, we review some of the core concepts that underpin wave physics and consider how they relate to experimental studies of cortical wave physiology and psychology.
