Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

From fleeting to stable: Scientists uncover recipe for new carbon dioxide-based energetic materials

When materials are compressed, their atoms are forced into unusual arrangements that do not normally exist under everyday conditions. These configurations are often fleeting: when the pressure is released, the atoms typically relax back to a stable low-pressure state. Only a few very specific materials, like diamond, retain their high-pressure structure after returning to room temperature and atmospheric pressure.

But locking those atomic arrangements in place under ambient conditions could create new classes of useful materials with a wide range of potential applications. One particularly compelling example is energetic materials, which are useful for propellants and explosives.

In a study published in Communications Chemistry, researchers at Lawrence Livermore National Laboratory (LLNL) identified a first-of-its-kind carbon dioxide-equivalent polymer that can be recovered from high-pressure conditions.

Sloshing liquefied natural gas in cargo tanks causes higher impact forces than expected

What happens if liquefied natural gas (LNG) hits the wall of the cargo tanks in a ship? New research from the team of physicist Devaraj van der Meer from the University of Twente, published in the Proceedings of the National Academy of Sciences, shows that much higher pressure peaks can occur during impact than previously assumed. This insight is important for the design and safety of LNG ships and future liquid hydrogen transport systems.

Normally, a thin layer of air prevents a liquid from hitting a surface directly. The gas acts as a cushion and dampens the blow. In LNG ships, that air has been replaced by vapor from the LNG itself. And that vapor can condense back into liquid during impact. As a result, the cushion disappears, and the load on the wall increases sharply.

Watching atoms roam before they decay

Together with an international team, researchers from the Molecular Physics Department at the Fritz Haber Institute have revealed how atoms rearrange themselves before releasing low-energy electrons in a decay process initiated by X-ray irradiation. For the first time, they have gained detailed insights into the timing of the process—shedding light on related radiation damage mechanisms. Their research is published in the Journal of the American Chemical Society.

High-energy radiation, for example in the X-ray range, can cause damage to our cells. This is because energetic radiation can excite atoms and molecules, which then often decay—meaning that biomolecules are destroyed and larger biological units can lose their function. There is a wide variety of such decay processes, and studying them is of great interest in order to better understand and avert radiation damage.

In the study, researchers from the Molecular Physics Department, together with international partners, investigated a radiation-induced decay process that plays a key role in radiation chemistry and biological damage processes: electron-transfer-mediated decay (ETMD). In this process, one atom is excited by irradiation. Afterward, this atom relaxes by stealing an electron from a neighbor, while the released energy ionizes yet another nearby atom.

Establishing a new QM/MM design principle based on electronic-state responses

A research team has proposed a new design principle for QM/MM (quantum mechanics/molecular mechanics) simulations. The approach enables objective and automatic determination of the quantum-mechanical region based on electronic-state changes, addressing a long-standing challenge in multiscale molecular simulations.

The researchers included Professor Hirotoshi Mori (Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University), together with Nichika Ozawa (first-year Ph.D. student at Ochanomizu University) and Assistant Professor Nahoko Kuroki of Ochanomizu University.

The findings are published in the journal Advanced Science as a cover article.

Superconducting nanowire memory array achieves significantly lower error rate

Quantum computers, systems that process information leveraging quantum mechanical effects, will require faster and energy-efficient memory components, which will allow them to perform well on complex tasks. Superconducting memories are promising memory devices that are made from superconductors, materials that conduct electricity with a resistance of zero when cooled below a critical temperature.

These memory devices could be faster and consume significantly less energy than existing memories based on superconductors. Despite their potential, most existing superconducting memories are prone to errors and are difficult to scale up to create larger systems containing several memory cells.

Researchers at Massachusetts Institute of Technology (MIT) recently developed a new scalable superconducting memory that is based on nanowires, one-dimensional (1D) nanostructures with unique optoelectronic properties. This memory, introduced in a paper published in Nature Electronics, was found to be less prone to errors than many other superconducting nanowire-based memories introduced in the past.

Brain Scans Reveal Hidden Changes After Menopause

New research suggests menopause is associated with brain volume loss in key regions tied to memory and emotions, along with higher rates of anxiety, depression, and sleep issues.

Hormone therapy didn’t prevent these changes, though it may slow age-related declines in reaction speed.

Menopause linked to brain changes and mental health challenges.

Reentry and disintegration dynamics of space debris tracked using seismic data

Therefore, there is a pressing need to develop tools that can be used to determine the trajectory, size, nature, and potential impact locations of reentering debris in near real time. This is a critical step toward mobilizing appropriate response operations (7). In this work, we have demonstrated that open-source seismic data are capable of fulfilling this requirement.

Past work has demonstrated the sensitivity of seismometers to reentry-generated shockwaves and explosions of natural meteoroids [for example, (8–10)]. However, the trajectories, speeds, and fragmentation chains of artificial spacecraft falling from orbit are distinct from those of natural objects entering from beyond the Earth‒Moon system. This means that the patterns of debris fallout that artificial spacecraft produce are also potentially more complex; for example, some components such as fuel tanks are structurally reinforced and hence more likely to survive and impact the ground, whereas others (such as solar panels) are deliberately designed to demise during reentry. Therefore, techniques used for natural objects require modification.

/* */