Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

A Boost for the Precision of Genome Editing

The FDA’s recent approval of the first CRISPR-Cas9–based gene therapy has marked a major milestone in biomedicine, validating genome editing as a promising treatment strategy for disorders like sickle cell disease, muscular dystrophy, and certain cancers.

CRISPR-Cas9, often likened to “molecular scissors,” allows scientists to cut DNA at targeted sites to snip, repair, or replace genes. But despite its power, Cas9 poses a critical safety risk: the active enzyme can linger in cells and cause unintended DNA breaks—so-called off-target effects—which may trigger harmful mutations in healthy genes.

Now, researchers in the labs of Professor Ronald T. Raines (MIT Department of Chemistry) and Professor Amit Choudhary (Harvard Medical School) have engineered a precise way to turn Cas9 off after its job is done—significantly reducing off-target effects and improving the clinical safety of gene editing. Their findings are detailed in a new paper published this week in the Proceedings of the National Academy of Sciences (PNAS).


Researchers used cells that glow green due to a green fluorescent protein (GFP) gene. If Cas9 is working, it disrupts the GFP gene and the cells stop glowing. If LFN-Acr blocks Cas9, the cells keep glowing. These images depict cells in different conditions: some with active Cas9 (which stopped the green glow), some with Cas9 and LFN-Acr (glow stayed on).

Image courtesy of the researchers.

IBM and RIKEN Unveil First IBM Quantum System Two Outside of the U.S.

IBM & RIKEN unveiled the 1st IBM Quantum System Two ever to be deployed outside of the US & beyond an IBM Quantum Data Center. The availability of this system marks a milestone as the 1st quantum computer to be co-located w/RIKEN’s supercomputer Fugaku.

Robotic drummer gradually acquires human-like behaviors

Humanoid robots, robots with a human-like body structure, have so far been primarily tested on manual tasks that entail supporting humans in their daily activities, such as carrying objects, collecting samples in hazardous environments, supporting older adults or acting as physical therapy assistants. In contrast, their potential for completing expressive physical tasks rooted in creative disciplines, such as playing an instrument or participating in performance arts, remains largely unexplored.

Researchers at SUPSI, IDSIA and Politecnico di Milano recently introduced Robot Drummer, a new humanoid robot that can play the drums both accurately and expressively, supported by a reinforcement learning algorithm. This robot, presented in a paper published on the arXiv preprint server, was found to gradually acquire human-like behaviors, including movements that are often performed by drummers.

“The idea for Robot Drummer actually emerged from a spontaneous conversation over coffee with my co-author, Loris Roveda,” Asad Ali Shahid, first author of the paper, told Tech Xplore. “We were discussing how humanoid robots have become increasingly capable at a wide range of tasks, but rarely engage in creative and expressive domains. That raised a fascinating question: what if a humanoid robot could take on a creative role, like performing music? Drumming seemed like a perfect frontier, as it’s rhythmic, physical, and requires rapid coordination across limbs.”

New insights into how the visual system synchronizes visual information

The human brain builds mental representations of the world based on the signals and information detected via the human senses. While we perceive simultaneously occurring sensory stimuli as being synchronized, the generation and transmission speeds of individual sensory signals can vary greatly.

Researchers at the Institute of Molecular and Clinical Ophthalmology Basel (IOB), University of Basel and Eidgenossische Technische Hochschule (ETH) Zurich recently carried out a study aimed at better understanding how the human visual system achieves this synchronization, regardless of the speed at which visual signals travel. Their paper, published in Nature Neuroscience, reports a previously unknown mechanism through which the retina synchronizes the arrival times of different visual signals.

“We can see because photoreceptors in the retina at the back of our eyes detect light and encode information about the visual world in the form of electrical signals,” Felix Franke and Annalisa Bucci, senior author and first author of the paper, respectively, told Medical Xpress.

Surfaces, not confinement, rule until the thinnest limits

Researchers at the Max Planck Institute for Polymer Research have upended assumptions about how water behaves when squeezed into atom-scale spaces. By applying spectroscopic tools together with the machine learning simulation technique to water confined in a space of only a few molecules thick, the team, led by Mischa Bonn, found that water’s structure remains strikingly “normal” until confined to below a nanometer, far thinner than previously believed.

The research, “Interfaces Govern the Structure of Angstrom-Scale Confined Water Solutions,” was published in Nature Communications.

Peering into the structure of a layer of water molecules that is only a few molecules thick is a formidable scientific challenge. The team fabricated a nanoscale capillary device by trapping water between a single layer of graphene and a calcium fluoride (CaF₂) substrate. They then wielded cutting-edge vibrational surface-specific spectroscopy—capable of detecting the microscopic structure of confined water, including the orientation and hydrogen-bonding of water molecules—to “see” the elusive few layers of water.

New theory may solve quantum ‘jigsaw puzzle’ for controlling chemical reactions

In the past, chemists have used temperature, pressure, light, and other chemical ways to speed up or slow down chemical reactions. Now, researchers at the University of Rochester have developed a theory that explains a different way to control chemical reactions—one that doesn’t rely on heat or light but instead on the quantum environment surrounding the molecules.

In a paper published in the Journal of the American Chemical Society, the researchers—including Frank Huo, the Dean and Laura Marvin Endowed Professor in Physical Chemistry in Rochester’s Department of Chemistry and graduate students Sebastian Montillo and Wenxiang Ying—argue that traditional theories used to predict how fast occur may not fully capture what happens under certain quantum light-matter interaction conditions.

To address this, they developed a new theory showing how —specifically, an effect called vibrational strong coupling (VSC)—can influence chemical reactions.

Sunlight-activated material turns PFAS in water into harmless fluoride

Researchers at the University of Adelaide have developed a sunlight-activated material that can degrade per- and polyfluoroalkyl substances (PFAS) in water, breaking down the pollutant into harmless components, including fluoride. The work is published in the journal Small.

New physical model aims to boost energy storage research

Engineers rely on computational tools to develop new energy storage technologies, which are critical for capitalizing on sustainable energy sources and powering electric vehicles and other devices. Researchers have now developed a new classical physics model that captures one of the most complex aspects of energy storage research—the dynamic nonequilibrium processes that throw chemical, mechanical and physical aspects of energy storage materials out of balance when they are charging or discharging energy.

The new Chen-Huang Nonequilibrium Phasex Transformation (NExT) Model was developed by Hongjiang Chen, a former Ph.D. student at NC State, in conjunction with his advisor, Hsiao-Ying Shadow Huang, who is an associate professor of mechanical and aerospace engineering at the university. A paper on the work, “Energy Change Pathways in Electrodes during Nonequilibrium Processes,” is published in The Journal of Physical Chemistry C.

But what are “nonequilibrium processes”? Why are they important? And why would you want to translate those processes into mathematical formulae? We talked with Huang to learn more.

Mobile phone app reduces suicidal behavior among high-risk patients, new study shows

A mobile phone app designed to deliver suicide-specific therapy reduced suicidal behavior among high-risk psychiatric inpatients, according to a new study by scientists at Yale School of Medicine and The Ohio State University Wexner Medical Center and College of Medicine.

The study, published in JAMA Network Open, found that the app, OTX-202, reduced the recurrence of post-discharge suicide attempts by 58.3% among patients who had previously attempted suicide. This reduction is a critical achievement for a group that is particularly vulnerable to repeated suicidal behaviors, the researchers said.

Users of the app also experienced sustained reductions in for up to 24 weeks after psychiatric hospitalization, according to the study. In contrast, patients who used an active control app in addition to treatment as usual showed early improvement, but suicidal thoughts rebounded by week 24.

/* */