Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

The Lasting Impact Of Daniel Dennett In Philosophy And Leadership

An academic whose work reaches beyond the Ivory Tower is rare. Scholarly writing tends to be highly technical, filled with footnotes and references, and often lacks a compelling narrative to captivate the reader. Not to mention that the work itself is usually deemed irrelevant and impractical for public knowledge.

The American philosopher Daniel Dennett (1942−2024) was, without a doubt, one of these generational thinkers who transcended the academic box. Why? His writing is filled with clear and interesting thought experiments, allowing anyone to grasp his theories, which span from philosophy, cognitive science and evolutionary biology to farming, sailing, and religion. Any curious person can find a relevant topic relating to their life in Dennett’s vast body of work, and it will likely have them questioning whether they actually understood the topic in the first place.

To celebrate the life and work of Dennett, the aptly named Dennett Prize was introduced in 2024. Like Dennett, the winner should “challenge received ideas and introduce new perspectives.” The prize is presented as part of the International Center for Consciousness Studies (ICCS) annual conference, held this year in Heraklion, Crete, earlier this month. The inaugural winner of the Dennett Prize was given to Andy Clark, professor of cognitive philosophy at the University of Sussex.

Sepsis criteria and kidney function: eliminating sex, age and economic status biases

In this Perspective article, the authors argue that current criteria for sepsis in adults and children fail to adequately consider one of the most common sepsis-related organ dysfunctions, acute kidney injury, which has important implications for diagnosis and patient outcomes.

Physicists discover new state of quantum matter

Researchers at the University of California, Irvine have discovered a new state of quantum matter. The state exists within a material that the team reports could lead to a new era of self-charging computers and ones capable of withstanding the challenges of deep space travel.

“It’s a new phase of matter, similar to how water can exist as liquid, ice or vapor,” said Luis A. Jauregui, professor of physics & astronomy at UC Irvine and corresponding author of the new paper in Physical Review Letters.

“It’s only been theoretically predicted—no one has ever measured it until now.”

Research reveals quantum topological potential in material

New research into topological phases of matter may spur advances in innovative quantum devices. As described in a new paper published in the journal Nature Communications, a research team including Los Alamos National Laboratory scientists used a novel strain engineering approach to convert the material hafnium pentatelluride (HfTe5) to a strong topological insulator phase, increasing its bulk electrical resistance while lowering it at the surface, a key to unlocking its quantum potential.

“I’m excited that our team was able to show that the elusive and much-sought-after topological surface states can be made to become a predominant electrical conduction pathway,” said Michael Pettes, scientist with the Center for Integrated Nanotechnologies (CINT) at the Laboratory.

“This is promising for the development of types of quantum optoelectronic devices, dark matter detectors and topologically protected devices such as quantum computers. And the methodology we demonstrate is compatible for experimentation on other .”

Self-Assembled Nanoparticles from Xie-Bai-San Decoction: Isolation, Characterization and Enhancing Oral Bioavailability

Natural nanoparticles have been found to exist in traditional Chinese medicine (TCM) decoctions. However, whether natural nanoparticles can influence the oral bioavailability of active compounds has not been elucidated. Using Xie-Bai-San decoction (XBSD) as an example, the purpose of this study was to isolate, characterize and elucidate the mechanism of the nanoparticles (N-XBSD) in XBSD, and further to explore whether the bioavailability of the main active compounds could be enhanced by N-XBSD.

N-XBSD were isolated from XBSD, and investigated its characterization and study of its formation mechanism, and evaluation of its ability to enhance bioavailability of active compounds.

The N-XBSD was successfully isolated with the average particle size of 104.53 nm, PDI of 0.27 and zeta potential of −5.14 mV. Meanwhile, all the eight active compounds were most presented in N-XBSD. Kukoamine B could self-assemble with mulberroside A or liquiritin to form nanoparticles, respectively. And the FT-IR and HRMS results indicated the possible binding of the ammonium group of kukoamine B with the phenolic hydroxyl group of mulberroside A or liquiritin, respectively. The established UPLC-MS/MS method was accurate and reliable and met the quantitative requirements. The pharmacokinetic behaviors of the N-XBSD and decoction were similar in rats. Most notably, compared to that of free drugs, the Cmax, AUC0-∞, AUC0-t, T1/2 and MRT0-∞ values of index compounds were the higher in N-XBSD, with a slower plasma clearance rate in rats.

Chinese nanotechnology fueling advanced bio, cyber weapons, electronic warfare tools, study warns

The Chinese military is building sophisticated biological weapons and small-scale electronic tools made with nanotechnology that could be used in covert warfare, a major study warns.

China’s invisible arsenals encompass a range of advanced weaponry that are distinctly focused on providing the Chinese Communist Party with a range of asymmetric warfare options, including the delivery of biological, biochemical and neurobiological weapons on target populations,” according to a report by three open-source intelligence analysts.

The People’s Liberation Army, or PLA, is developing nanoweapons using highly sophisticated microscopic materials that enhance the effects of biological weapons, according to the report, titled “In the Shadows of Science: Unravelling China’s Invisible Arsenals of Nanoweapons.” It was made public earlier this month.

A Machine‐Learning Approach Identifies Rejuvenating Interventions in the Human Brain

As the world population is ageing rapidly, with over two billion people projected to be above the age of 60 by 2050, age-related brain disorders are on the rise. Living longer but in poor health is not only a daunting prospect, it also places a substantial burden on healthcare systems worldwide. The idea of being able to counteract the functional decline of our brain through rejuvenating interventions sounds therefore promising. The question is how can we identify compounds that have the potential to efficiently rejuvenate brain cells and to protect the ageing population from neurodegeneration? Prof. Antonio Del Sol and his teams of computational biologists, based both at the LCSB from the University of Luxembourg and at the CIC bioGUNE in Bilbao, used their machine learning expertise to tackle the challenge.

The researchers developed what is called an “ageing clock”, a computational tool designed to measure the biological age of cells, as opposed to their chronological age. Indeed, the organs and tissues of people of the same age can evolve differently over time depending on genetic and environmental factors, leading to different biological ages. These clocks are therefore useful tools to assess ageing at the molecular level and can help in understanding its causes and consequences.

The clock designed by the LCSB and CIC bioGune researchers is specific to the brain and uses gene expression information from 365 genes to make predictions. Using a machine learning approach, it was trained on data from healthy individuals, aged from 20 to 97, and could accurately predict their age. Further tests showed that the clock is able to estimate the biological age of different cell types in the brain, especially neurons. Lastly, by looking at the predicted biological ages for healthy individuals and for patients with neurological conditions, the researchers observed that patients exhibited a higher biological age.

“Our results tell us that the biological age of the brain cells calculated by our clock reflects the decline in brain function experienced by the patients, especially between 60 and 70, and is even correlated with the degree of neurodegeneration,” explains Dr Guillem Santamaria, first author of the study. “It supports the view of neurodegeneration as a form of accelerated ageing but, more importantly, the positive association between neurodegeneration and biological age suggests that the rejuvenating interventions identified by the clock could serve as neuroprotective agents.”

The aim of the researchers was to use the clock to find genetic or chemical interventions that would significantly shift back the biological age of brain cells. They explored the effect of thousands of compounds on neural progenitor cells and neurons and identified 453 unique rejuvenating interventions.

Among the identified compounds that have the potential to reverse the biological age of the two types of brain cells, several are known to extend lifespan in animal models and some are already used to treat neurological disorders, but the vast majority has not yet been studied in the context of health-or lifespan extension. “On the one hand, the fact that our computational platform identified drugs that have a known effect on brain function supports the idea that using the predicted effect of a compound on the biological age is an efficient way to evaluate its neuroprotective potential,” details Prof. Antonio Del Sol, head of the Computational Biology groups at the LCSB and CIC BioGUNE. “On the other, the results also highlight that our clock can help us find many new candidates that haven’t been studied before for their rejuvenating properties. It opens up a lot of new avenues.”

As a proof of concept of their approach, the researchers then tested three of the predicted compounds in mice, in collaboration with the team of Prof. Rubén Nogueiras at the Centre for Research in Molecular Medicine and Chronic Diseases. The administration of these drugs significantly reduced anxiety and slightly increased spatial memory in older mice, addressing two well-known symptoms associated with ageing. An analysis of gene expression showed that the combination of these compounds also led to a shift toward a younger phenotype. Altogether, these results show that a selection of compounds predicted to rejuvenate the brain did produce rejuvenation at the molecular level in the cortex of aged mice and had an impact on behavioural and cognitive functions.

Globally, the study, recently published in the journal Advanced Science, highlights the computational ageing clock developed by the researchers as a valuable resource for identifying brain-rejuvenating interventions with therapeutic potential in neurodegenerative diseases. It provides a strong foundation for further research. “The hundreds of compounds predicted by our platform require validation across multiple biological systems to assess their efficacy and safety, offering extensive opportunities for future therapeutic development,” concludes Prof. Antonio Del Sol.

Tesla FSD About to Go Unsupervised

Tesla’s Full Self-Driving technology is on the verge of a significant breakthrough, with potential approvals and expansions in multiple states and countries, paving the way for widespread adoption in robo-taxis and personal vehicles.

Questions to inspire discussion.

FSD and Robotaxi Progress.
🚗 Q: What is the most important catalyst for Tesla investors? A: Tesla’s Robo Taxi and FSD progress, with a 10x expansion in Austin area in 2 weeks, exponential increase in service area, and unsupervised FSD available for personal use in Texas and California by year-end.