Scientists at the University of Oxford have unveiled a pioneering method for capturing the full structure of ultra-intense laser pulses in a single measurement. The breakthrough, published in close collaboration with Ludwig-Maximilian University of Munich and the Max Planck Institute for Quantum Optics, could revolutionize our ability to control light-matter interactions.
This would have transformative applications in many areas, including research into new forms of physics and realizing the extreme intensities required for fusion energy research. The results have been published in Nature Photonics.
Ultra-intense lasers can accelerate electrons to near-light speeds within a single oscillation (or ‘wave cycle’) of the electric field, making them a powerful tool for studying extreme physics. However, their rapid fluctuations and complex structure make real-time measurements of their properties challenging.