Toggle light / dark theme

Transparent aluminum oxide (TAlOx), a real material despite its sci-fi name, is incredibly hard and resistant to scratches, making it perfect for protective coatings on electronics, optical sensors, and solar panels. On the sci-fi show Star Trek, it is even used for starship windows and spacefaring aquariums.

Current methods of making TAlOx are expensive and complicated, requiring high-powered lasers, vacuum chambers, or large vats of dangerous acids. That may change thanks to research co-authored by Filipino scientists from the Ateneo de Manila University.

Instead of immersing entire sheets of metal into acidic solutions, the researchers applied microdroplets of acidic solution onto small aluminum surfaces and applied an . Just two volts of electricity—barely more than what’s found in a single AA household flashlight battery—was all that was needed to transform the metal into glass-like TAlOx.

To test this new system, the team executed what is known as Grover’s search algorithm—first described by Indian-American computer scientist Lov Grover in 1996. This search looks for a particular item in a large, unstructured dataset using superposition and entanglement in parallel. The search algorithm also exhibits a quadratic speedup, meaning a quantum computer can solve a problem with the square root of the input rather than just a linear increase. The authors report that the system achieved a 71 percent success rate.

While operating a successful distributed system is a big step forward for quantum computing, the team reiterates that the engineering challenges remain daunting. However, networking together quantum processors into a distributed network using quantum teleportation provides a small glimmer of light at the end of a long, dark quantum computing development tunnel.

“Scaling up quantum computers remains a formidable technical challenge that will likely require new physics insights as well as intensive engineering effort over the coming years,” David Lucas, principal investigator of the study from Oxford University, said in a press statement. “Our experiment demonstrates that network-distributed quantum information processing is feasible with current technology.”

Silicon Valley-based robotics startup Figure AI is in talks to raise a massive $1.5 billion round at a $39.5 billion valuation, Bloomberg reports.

That’s a whopping 15 times higher than Figure’s $2.6 billion post-money valuation for its $675 million Series B last year. Figure’s current round is expected to be led by Align Ventures and Parkway Venture Capital, Bloomberg reported.

Figure builds humanoid robots for commercial and residential purposes. Humanoid robots are all the rage thanks to the AI boom: Austin-based Apptronik just raised $350 million while Meta is reportedly looking to get into robotics, too.

Elon Musk revives discussion on Mars colonization with a viral AI-generated video, amassing over 46 million views, showing an advanced Martian city. Originally predicted for 2024–2025, Musk’s vision includes direct democracy for Mars governance. The video sparked a mix of curiosity and criticism, especially regarding the absence of natural greenery.

From punch card-operated looms in the 1800s to modern cellphones, if an object has an “on” and an “off” state, it can be used to store information.

In a computer laptop, the binary ones and zeroes are transistors either running at low or high voltage. On a compact disc, the one is a spot where a tiny indented “pit” turns to a flat “land” or vice versa, while a zero is when there’s no change.

Historically, the size of the object making the “ones” and “zeroes” has put a limit on the size of the storage device. But now, University of Chicago Pritzker School of Molecular Engineering (UChicago PME) researchers have explored a technique to make ones and zeroes out of crystal defects, each the size of an individual atom for classical computer memory applications.

Most neuroscience research carried out up to date has primarily focused on neurons, the most renowned type of cell in the human brain. As a result, the unique functions of other brain cell types are less understood and have often been entirely overlooked.

Researchers at Instituto Cajal (CSIC), the Autonomous University of Madrid and Institute de Salud Carlos III recently carried out a study aimed at better understanding the contributions of astrocytes, a class of star-shaped glial cells found in the brain and spinal cord, to key mental functions. Their findings, published in Nature Neuroscience, unveiled the existence of astrocytic ensembles, specialized subsets that appear to be active during reward-driven behaviors.

“It is known that astrocytes are a heterogeneous cell type in their molecular and gene expression signatures, morphology and origin,” Marta Navarrete, senior author of the paper, told Medical Xpress.

Our brain and eyes can play tricks on us—not least when it comes to the expanding hole illusion. A new computational model developed by Flinders University experts helps to explain how cells in the human retina make us “see” the dark central region of a black hole graphic expand outwards.

In a new article posted to the arXiv preprint server, the Flinders University experts highlight the role of the eye’s in processing contrast and motion perception—and how messages from the cerebral cortex then give the beholder an impression of a moving or “expanding hole.”

“Visual illusions provide valuable insights into the mechanisms of human vision, revealing how the brain interprets complex stimuli,” says Dr. Nasim Nematzadeh, from the College of Science and Engineering at Flinders University.

A research group recently discovered the disappearance of nonreciprocal second harmonic generation (SHG) in MnPSe₃ when integrated into a two-dimensional (2D) antiferromagnetic MnPSe₃/graphene heterojunction.

The research, published in Nano Letters, highlights the role of interfacial magnon-plasmon coupling in this phenomenon.

2D van der Waals magnetic/non-magnetic heterojunctions hold significant promise for spintronic devices. Achieving these functionalities hinges on the interfacial proximity effect, a critical factor. However, detecting the proximity effect in 2D antiferromagnetic/non-magnetic heterojunctions presents considerable challenges, due to the small size and weak signals associated with these structures.

As more satellites, telescopes, and other spacecraft are built to be repairable, it will take reliable trajectories for service spacecraft to reach them safely. Researchers in the Department of Aerospace Engineering in The Grainger College of Engineering, University of Illinois Urbana-Champaign are developing a methodology that will allow multiple CubeSats to act as servicing agents to assemble or repair a space telescope.

Published in The Journal of the Astronautical Sciences, their method minimizes , guarantees that servicing agents never come closer to each other than 5 meters, and can be used to solve pathway guidance problems that aren’t space related.

“We developed a scheme that allows the CubeSats to operate efficiently without colliding,” said aerospace Ph.D. student Ruthvik Bommena. “These small spacecraft have limited onboard computation capabilities, so these trajectories are precomputed by mission design engineers.”