Holographic vector-field electron tomography reveals the three-dimensional magnetic texture of Bloch skyrmion tubes in FeGe at nanometre resolution, including complex three-dimensional modulations and fundamental skyrmion formation principles.
Prostate cancer statistics can look scary: 34,250 U.S. deaths in 2024. 1.4 million new cases worldwide in 2022. Dr. Bruce Montgomery, a UW Medicine oncologist, hopes that patients won’t see these numbers and just throw up their hands in fear or resignation.
“Being diagnosed with prostate cancer is not a death knell,” said Montgomery, senior author of a literature and trial review that appeared in JAMA today. Montgomery is the clinical director of Genitourinary Oncology at Fred Hutch Cancer Center and University of Washington Medical Center, and a professor of medicine and urology at the UW School of Medicine.
He encourages patients to ask their primary-care doctor specific questions about this cancer too. Montgomery also encourages his fellow doctors to bring up the question of prostate cancer screening with their patients.
Researchers at the Francis Crick Institute have identified genetic changes in blood stem cells from frequent blood donors that support the production of new, non-cancerous cells.
Understanding the differences in the mutations that accumulate in our blood stem cells as we age is important to understand how and why blood cancers develop and hopefully how to intervene before the onset of clinical symptoms.
As we age, stem cells in the bone marrow naturally accumulate mutations and with this, we see the emergence of clones, which are groups of blood cells that have a slightly different genetic makeup. Sometimes, specific clones can lead to blood cancers like leukemia.
A team of environmental researchers, Earth scientists and pollution specialists at Nanjing University, the Chinese Academy of Sciences and colleagues from Germany and the U.S. has found evidence that microplastics have a negative impact on photosynthesis in terrestrial, marine, and freshwater ecosystems.
In their study, published in the Proceedings of the National Academy of Sciences, the group conducted a meta-analysis of data from more than 150 studies involving the impact of microplastics on plants.
Prior research has shown that microplastics have made their way to nearly every ecosystem on the planet, and now contaminate plants and animals, including humans. For this new study, the research team wondered if microplastics might have an unknown impact on plants living in the ocean, in fresh water or growing on land, and they conducted a study of prior research to find out.
Understanding how ecosystems respond to ubiquitous microplastic (MP) pollution is crucial for ensuring global food security. Here, we conduct a multiecosystem meta-analysis of 3,286 data points and reveal that MP exposure leads to a global reduction in photosynthesis of 7.05 to 12.12% in terrestrial plants, marine algae, and freshwater algae. These reductions align with those estimated by a constructed machine learning model using current MP pollution levels, showing that MP exposure reduces the chlorophyll content of photoautotrophs by 10.96 to 12.84%. Model estimates based on the identified MP-photosynthesis nexus indicate annual global losses of 4.11 to 13.52% (109.73 to 360.87 MT·y−1) for main crops and 0.31 to 7.24% (147.52 to 3415.11 MT C·y−1) for global aquatic net primary productivity induced by MPs. Under scenarios of efficient plastic mitigation, e.g.
The shape is another important morphological feature that matters as a critical aspect of nanotoxicity. Studies have shown that shape plays a role in determining the cellular uptake of micro-nano particles (65, 66). SRS images of plastic particles confirmed the existence of shape diversity for micro-nano plastics in bottled water. To account for the shape of plastic particles in a statistical manner, we measure the aspect ratio of individual particles above the diffraction limit (Fig. 6 H). The aspect ratio is widely acknowledged in nanotoxicology studies (67, 68). The aspect ratio of the plastic particles detected ranges from 1 to 6, and the average aspect ratio for particles is around 1.7. Fig. 6 I–M provides a pictorial view of how the aspect ratio is related to the particle shape. Particles with an aspect ratio of above 3 are most likely to be fibrous in shape, while particles with an aspect ratio of below 1.4 will be largely spherical. Shape variation on plastic particles has been found in all polymers detected, confirming the widely recognized idea that real-world micro-nano plastics have diverse morphological prosperities. This dimension is hard to be resembled by engineered polymer nanoparticles commonly studied in research laboratories, and the toxicological consequences pertaining to real-life plastic particle exposures and their differing physicochemical properties (i.e., size, shape) have yet to be determined.
Twenty years after the first publication that used the term microplastic, we review current understanding, refine definitions, and consider future prospects. Microplastics arise from multiple sources, including tires, textiles, cosmetics, paint, and the fragmentation of larger items. They are widely distributed throughout the natural environment, with evidence of harm at multiple levels of biological organization. They are pervasive in food and drink and have been detected throughout the human body, with emerging evidence of negative effects. Environmental contamination could double by 2040, and wide-scale harm has been predicted. Public concern is increasing, and diverse measures to address microplastic pollution are being considered in international negotiations.
Pyrolysis gas chromatography–mass spectrometry reveals the presence of microplastics and nanoplastics in human kidney, liver and brain tissue samples from 2016 and 2024, with higher proportions found in the brain.
It’s about my paper.
Dissolving polymers with organic solvents is the essential process in the research and development of polymeric materials, including polymer synthesis, refining, painting, and coating. Now more than ever recycling plastic waste is a particularly imperative part of reducing carbon produced by the materials development processes.
Polymers, in this instance, refer to plastics and plastic-like materials that require certain solvents to be able to effectively dissolve and therefore become recyclable, though it’s not as easy as it sounds. Utilizing Mitsubishi Chemical Group’s (MCG) databank of quantum chemistry calculations, scientists developed a novel machine learning system for determining the miscibility of any given polymer with its solvent candidates, referred to as χ (chi) parameters.
This system has enabled scientists to overcome the limitations arising from a limited amount of experimental data on the polymer-solvent miscibility by integrating massive data produced from the computer experiments using high-throughput quantum chemistry calculations.
An elastocaloric cooling platform is constructed based on shape memory alloys with a cellular architecture that enables cooling powers above 1 kW.