Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Overlooked microproteins could treat obesity and metabolic disorders

The obesity rate has more than doubled in the last 30 years, affecting more than one billion people worldwide. This prevalent condition is also linked to other metabolic disorders, including type 2 diabetes, cardiovascular diseases, chronic kidney disease, and cancers.

Current treatment options include lifestyle interventions, bariatric surgery, and GLP-1 drugs like Ozempic or Wegovy, but many patients struggle to access or complete these treatments or to maintain their weight loss afterward.

Salk Institute scientists are looking for a new treatment strategy in microproteins, an understudied class of molecules found throughout the body that play roles in both health and disease.

Targeting sleeping tumor cells: Oncogene location may determine neuroblastoma’s resistance to cancer therapy

Neuroblastoma can be a particularly insidious cancer. In about half of all cases, tumors regress, even without therapy. In the other half, tumors grow very quickly. These tumors often respond well to chemotherapy at first, but usually return after one to two years. A characteristic feature of such aggressive neuroblastoma cells is an abnormally high number of copies of the oncogene MYCN.

A team led by Dr. Jan Dörr and Professor Anton Henssen from the Experimental and Clinical Research Center (ECRC), a joint institution of Charité—Universitätsmedizin Berlin and the Max Delbrück Center, has now discovered that the location of the MYCN gene plays an important role in the aggressiveness of neuroblastoma: If it is located outside chromosomes, enter a dormant state and thereby render themselves immune to therapy.

In Cancer Discovery, the research team proposes a new treatment strategy that targets these dormant . Their approach has already proven successful in a .

Seismic activity on the moon could pose risk to long-term lunar infrastructure

A new paper reveals that ground acceleration from moonquakes, rather than meteor impacts, was responsible for shifting lunar landscapes at the moon’s Taurus-Littrow valley, where Apollo 17 astronauts landed in 1972. The study also pinpointed a possible cause for those surface changes and assessed damage risk using new models of the quakes—findings that may impact the safety of future lunar missions and the establishment of long-term bases on the moon.

The paper, authored by Smithsonian Senior Scientist Emeritus Thomas R. Watters and University of Maryland Associate Professor of Geology Nicholas Schmerr, is published in the journal Science Advances.

The scientists analyzed evidence from the Apollo 17 landing site, where NASA astronauts collected samples from boulder falls and landslides that were likely triggered by moonquakes. By studying the geological evidence left behind, the researchers were able to estimate the strength of these ancient moonquakes and identify their most probable source.

Sleep disruption damages blood vessels in brain and may increase dementia risk: study

A new study reveals that fragmented sleep causes cellular damage to the brain’s blood vessels, providing further evidence to suggest that sleep disruption predisposes the brain to dementia.

The research, published in the journal Brain, is the first to offer cellular and molecular evidence that sleep disruption directly causes damage to brain blood vessels and blood flow.

“We found that individuals who had more fragmented sleep, such as sleeping restlessly and waking up a lot at night, had a change in their balance of pericytes—a brain blood vessel cell that plays an important role in regulating brain blood flow and the entry and exit of substances between the blood and the brain,” said Andrew Lim, principal investigator of the study and a sleep neurologist and scientist at Sunnybrook Health Sciences Centre.

Elon Announces MOST Powerful FSD Update Ever

Questions to inspire discussion.

🛣️ Q: What specific improvements can we expect from the new FSD model? A: The new model will see and avoid potholes, drive better in parking lots, find parking spaces more efficiently, figure out pickup and drop-off zones for robotaxis, and handle high chaos situations like crowded areas more effectively.

Safety and Regulations.

🚦 Q: How does FSD’s safety compare to human drivers? A: Tesla’s FSD technology is already much safer than humans with the current Version 4, which has 8 cameras and 10x better parameters than previous versions, and it’s expected to improve further with future updates.

📊 Q: How significant are the improvements in the new FSD model? A: While the model has 10x better parameters, the features may not be 10x better, but improvements could be greater than 10x due to hard-to-measure benefits like reduced driving stress and increased safety.

🚫 Q: What’s limiting FSD’s full potential? A: Regulations currently hold FSD back from reaching its full potential, despite its ability to drive faster and handle high chaos situations more effectively.

Hepatocellular Carcinoma in Mice Affects Neuronal Activity and Glia Cells in the Suprachiasmatic Nucleus

Background: Chronic liver diseases such as hepatic tumors can affect the brain through the liver–brain axis, leading to neurotransmitter dysregulation and behavioral changes. Cancer patients suffer from fatigue, which can be associated with sleep disturbances. Sleep is regulated via two interlocked mechanisms: homeostatic regulation and the circadian system. In mammals, the hypothalamic suprachiasmatic nucleus (SCN) is the key component of the circadian system. It generates circadian rhythms in physiology and behavior and controls their entrainment to the surrounding light/dark cycle. Neuron–glia interactions are crucial for the functional integrity of the SCN. Under pathological conditions, oxidative stress can compromise these interactions and thus circadian timekeeping and entrainment.

Programmable Soft Materials: A Leap Forward in Energy Absorption and Shape-Shifting Design

Researchers from Lawrence Livermore National Laboratory (LLNL), in collaboration with Harvard University, Caltech, Sandia National Laboratories, and Oregon State University, have unveiled a groundbreaking innovation in materials science: a programmable soft material capable of bending, bouncing, and absorbing energy on demand. This new material, described in the journal Advanced Materials, could pave the way for next-generation protective gear, aerospace structures, and adaptive robotic systems.

👉 Read the original article on Phys.org

Dr. Reynold Panettieri, MD — Novel Therapeutic Approaches To Treat Airways Diseases

Novel Therapeutic Approaches To Treat Airways Diseases — Dr. Reynold Panettieri, MD, — Vice Chancellor for Translational Medicine and Science Director, Rutgers Institute for Translational Medicine and Science / Professor of Medicine, Robert Wood Johnson Medical School.

/* */