Toggle light / dark theme

A joint research team from Seoul National University and Harvard University has developed a next-generation swarm robot system inspired by nature—capable of movement, exploration, transport, and cooperation, all without the need for precise sensors or centralized control.

The study was led by Professor Ho-Young Kim, Dr. Kyungmin Son, and master’s student Kwanwoo Kim at SNU’s Department of Mechanical Engineering, and Professor L. Mahadevan and Dr. Kimberly Bowal at Harvard.

Their approach connects simple, active particles into chain-like structures that can carry out complex tasks without any advanced programming or artificial intelligence. The research is published in Science Advances.

Inorganic semiconductors form the backbone of modern electronics due to their excellent physical properties, including high carrier mobility, thermal stability, and well-defined energy band structures, which enable precise control over electrical conductivity. Unfortunately, their intrinsic brittleness has traditionally required the use of costly, complex processing methods like deposition and sputtering—which apply inorganic materials to rigid substrates and limit their suitability for flexible or wearable electronics.

Now, however, a recent breakthrough by researchers from the Shanghai Institute of Ceramics of the Chinese Academy of Sciences and Shanghai Jiao Tong University in the warm processing of traditionally brittle semiconductors offers tremendous potential to expand applications for inorganic semiconductors into these fields.

In their study recently published in Nature Materials, the researchers report achieving plastic warm metalworking in a range of inorganic semiconductors traditionally considered too brittle for such processing. These findings open new avenues for efficient and cost-effective semiconductor manufacturing.

A research team has developed a high-performance supercapacitor that is expected to become the next generation of energy storage devices. With details published in the journal Composites Part B: Engineering, the technology developed by the researchers overcomes the limitations of existing supercapacitors by utilizing an innovative fiber structure composed of single-walled carbon nanotubes (CNTs) and the conductive polymer polyaniline (PANI).

Compared to conventional batteries, supercapacitors offer faster charging and higher power density, with less degradation over tens of thousands of charge and discharge cycles. However, their relatively low energy density limits their use over long periods of time, which has limited their use in practical applications such as and drones.

Researchers led by Dr. Bon-Cheol Ku and Dr. Seo Gyun Kim of the Carbon Composite Materials Research Center at the Korea Institute of Science and Technology (KIST) and Professor Yuanzhe Piao of Seoul National University (SNU), uniformly chemically bonded single-walled carbon nanotubes (CNTs), which are highly conductive, with polyaniline (PANI), which is processable and inexpensive, at the nanoscale.

In the absence of air, microorganisms produce hydrogen using an enzyme called [FeFe]-hydrogenase, one of the most efficient hydrogen-producing biocatalysts known and a promising tool for green hydrogen energy. However, these enzymes are rapidly destroyed when exposed to air, which has so far limited their industrial use.

Now, joint efforts led by scientists from the Photobiotechnology group and the Center for Theoretical Chemistry at Ruhr University Bochum, Germany, have isolated a new type of oxygen-stable [FeFe]-hydrogenase and revealed its “tricks” for this oxygen-stability.

The results are published in the Journal of the American Chemical Society.

While many research groups worldwide have been searching for dark matter over the past decades, detecting it has so far proved very challenging, thus very little is known about its possible composition and physical properties. Two promising dark matter candidates (i.e., hypothetical particles that dark matter could be made of) are axions and dark photons.

The MAgnetized Disk and Mirror Axion eXperiment (MADMAX) is a large research effort aimed at detecting axions or dark photons using a sophisticated instrument comprised of a stack of sapphire disks and a reflective mirror. In a recent paper published in Physical Review Letters, the MADMAX collaboration published the results of the first search for dark photons performed using a prototype of their detector.

“The primary goal of MADMAX is to detect in the form of axions or dark photons,” Jacob Mathias Egge, first author of the paper, told Phys.org. “These two are popular candidates for what dark matter might consist of. In our recent paper, we describe the results of a search for dark photons using a small-scale prototype.”

The move from two to three dimensions can have a significant impact on how a system behaves, whether it is folding a sheet of paper into a paper airplane or twisting a wire into a helical spring. At the nanoscale, 1,000 times smaller than a human hair, one approaches the fundamental length scales of, for example, quantum materials.

At these length scales, the patterning of nanogeometries can lead to changes in the material properties itself—and when one moves to three dimensions, there come new ways to tailor functionalities, by breaking symmetries, introducing curvature, and creating interconnected channels.

Despite these exciting prospects, one of the main challenges remains: how to realize such complex 3D geometries, at the nanoscale, in ? In a new study, an international team led by researchers at the Max Planck Institute for Chemical Physics of Solids have created three-dimensional superconducting nanostructures using a technique similar to a nano-3D printer.

The marine bacterium Alcanivorax borkumensis feeds on oil, multiplying rapidly in the wake of oil spills, and thereby accelerating the elimination of pollution, in many cases. It does this by producing an “organic dishwashing liquid” which it uses to attach itself to oil droplets.

Researchers from the University of Bonn, RWTH Aachen University, Heinrich Heine University Dusseldorf and research center Forschungszentrum Julich have now discovered the mechanism by which this organic liquid is synthesized.

Published in Nature Chemical Biology, the research findings could allow the breeding of more efficient strains of oil-degrading bacteria.

Carbyne, a one-dimensional chain of carbon atoms, is incredibly strong for being so thin, making it an intriguing possibility for use in next-generation electronics, but its extreme instability causing it to bend and snap on itself made it nearly impossible to produce at all, let alone produce enough of it for advanced studies. Now, an international team of researchers, including from Penn State, may have a solution.

The research team has enclosed carbyne in —tiny, tube-shaped structures made entirely of carbon that are thousands of times thinner than a human hair. Doing this at low temperatures makes carbyne more stable and easier to produce, potentially leading to new advancements in materials science and technology, the researchers said.

They called the development “promising news,” as scientists have struggled for decades to create a stable form of carbyne in large enough quantities for deeper investigation.

A team of researchers has developed a technique that makes high-dimensional quantum information encoded in light more practical and reliable.

This advancement, published in Physical Review Letters, could pave the way for more secure data transmission and next-generation quantum technologies.

Quantum information can be stored in the precise timing of single photons, which are tiny particles of light.

The deconstruction of cellulose is essential for the conversion of biomass into fuels and chemicals. But cellulose, the most abundant renewable polymer on the planet, is extremely recalcitrant to biological depolymerization. Although composed entirely of glucose units, its crystalline microfibrillar structure and association with lignin and hemicelluloses in plant cell walls make it highly resistant to degradation.

As a result, its degradation in nature is slow and requires complex enzymatic systems. The deconstruction of cellulose, which could, among other things, significantly increase the production of ethanol from sugarcane, has been a major technological challenge for decades.

Researchers from the Brazilian Center for Research in Energy and Materials (CNPEM), in partnership with colleagues from other institutions in Brazil and abroad, have just obtained an enzyme that could revolutionize the process of deconstructing cellulose, allowing, among other technological applications, the large-scale production of so-called second-generation ethanol, derived from agro-industrial waste such as sugarcane bagasse and corn straw. The study was published in the journal Nature.