A new study led by researchers at the Earth-Life Science Institute (ELSI) at the Institute of Science, Tokyo, has uncovered a surprising role for calcium in shaping life’s earliest molecular structures. Their findings suggest that calcium ions can selectively influence how primitive polymers form, shedding light on a long-standing mystery: how life’s molecules came to prefer a single “handedness” (chirality).
The study is published in Proceedings of the National Academy of Sciences.
Like our left and right hands, many molecules exist in two mirror-image forms. Yet life on Earth has a striking preference: DNA’s sugars are right-handed, while proteins are built from left-handed amino acids. This phenomenon, called homochirality, is essential for life as we know it—but how it first emerged remains a major puzzle in origins of life research.